Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes

This article has been updated

Abstract

In addition to the genetic framework, there are two other critical requirements for the development of tissue-specific autoimmune disease. First, autoreactive T cells need to escape thymic negative selection. Second, they need to find suitable conditions for autoantigen presentation and activation in the target tissue. We show here that these two conditions are fulfilled in diabetic mice of the nonobese diabetic (NOD) strain. A set of autoreactive CD4+ T cells specific for an insulin peptide, with the noteworthy feature of not recognizing the insulin protein when processed by antigen-presenting cells (APCs), escaped thymic control, participated in diabetes and caused disease. Moreover, APCs in close contact with beta cells in the islets of Langerhans bore vesicles with the antigenic insulin peptides and activated peptide-specific T cells. Our findings may be relevant for other cases of endocrine autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insulin-reactive T cells in NOD mice.
Figure 2: Type B T cells are diabetogenic.
Figure 3: Intra-islet DCs pulsed with secretory granules present insulin peptides.
Figure 4: Secretory granules contain proteolytic fragments of the insulin β-chain in NOD Rag1−/− islets.

Similar content being viewed by others

Change history

  • 05 March 2010

    In the version of this article initially published online, some hybridomas in Figure 3 were misidentified. The correct text for Figure 3c is “type A (4F7) and type B (2D10 and 1.7) hybridomas” and the correct text for Figure 3e,f is “type B (2D10; e) and type A (4F7; f) hybridomas.” The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Anderson, M.S. & Bluestone, J.A. The NOD mouse: a model of immune disregulation. Annu. Rev. Immunol. 23, 447–485 (2005).

    Article  CAS  Google Scholar 

  2. Zhang, L., Nakayama, M. & Eisenbarth, G.S. Insulin as an autoantigen in NOD/human diabetes. Curr. Opin. Immunol. 20, 111–118 (2008).

    Article  Google Scholar 

  3. Wegmann, D.R., Norbury-Glaser, M. & Daniel, D. Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Eur. J. Immunol. 24, 1853–1857 (1994).

    Article  CAS  Google Scholar 

  4. Wegmann, D.R., Gill, R.G., Norbury-Glaser, M., Schloot, N. & Daniel, D. Analysis of the spontaneous T cell response to insulin in NOD mice. J. Autoimmun. 7, 833–843 (1994).

    Article  CAS  Google Scholar 

  5. Daniel, D., Gill, R.G., Schloot, N. & Wegmann, D. Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. J. Immunol. 25, 1056–1062 (1995).

    Article  CAS  Google Scholar 

  6. Moriyama, H. et al. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse. Proc. Natl. Acad. Sci. USA 100, 10376–10381 (2003).

    Article  CAS  Google Scholar 

  7. Nakayama, M. et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435, 220–223 (2005).

    Article  CAS  Google Scholar 

  8. Jasinski, J.M. et al. Transgenic insulin (B:9–23) T-cell receptor mice develop autoimmune diabetes dependent upon RAG genotype, H-2g7 homozygosity, and insulin 2 gene knockout. Diabetes 55, 1978–1984 (2006).

    Article  CAS  Google Scholar 

  9. Chentoufi, A.A. & Polychronakos, C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes 51, 1383–1390 (2002).

    Article  CAS  Google Scholar 

  10. Garcia, C.A. et al. Dendritic cells in human thymus and periphery display a proinsulin epitope in a transcription-dependent, capture-independent fashion. J. Immunol. 175, 2111–2122 (2005).

    Article  CAS  Google Scholar 

  11. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  12. Pugliese, A. et al. Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J. Clin. Invest. 107, 555–564 (2001).

    Article  CAS  Google Scholar 

  13. French, M.B. et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46, 34–39 (1997).

    Article  CAS  Google Scholar 

  14. Jaeckel, E., Lipes, M.A. & von Boehmer, H. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat. Immunol. 5, 1028–1035 (2004).

    Article  CAS  Google Scholar 

  15. Abiru, N. et al. Dual overlapping peptides recognized by insulin peptide B:9–23 T cell receptor AV13S3 T cell clones of the NOD mouse. J. Autoimmun. 14, 231–237 (2000).

    Article  CAS  Google Scholar 

  16. Abiru, N. et al. Peptide and major histocompatibility complex-specific breaking of humoral tolerance to native insulin with the B9–23 peptide in diabetes-prone and normal mice. Diabetes 50, 1274–1281 (2001).

    Article  CAS  Google Scholar 

  17. Nakayama, M. et al. Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity. J. Clin. Invest. 117, 1835–1843 (2007).

    Article  CAS  Google Scholar 

  18. Levisetti, M.G., Suri, A., Petzold, S.J. & Unanue, E.R. The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J. Immunol. 178, 6051–6057 (2007).

    Article  CAS  Google Scholar 

  19. Hausmann, D.H., Yu, B., Hausmann, S. & Wucherpfennig, K.W. pH-dependent peptide binding properties of the type I diabetes-associated I-Ag7 molecule: rapid release of CLIP at an endosomal pH. J. Exp. Med. 189, 1723–1734 (1999).

    Article  CAS  Google Scholar 

  20. Levisetti, M.G., Lewis, D.M., Suri, A. & Unanue, E.R. Weak proinsulin peptide-MHC complexes are targeted in autoimmune diabetes in mice. Diabetes 57, 1852–1860 (2008).

    Article  CAS  Google Scholar 

  21. Liu, G.Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3, 407–415 (1995).

    Article  CAS  Google Scholar 

  22. Fairchild, P.J., Wildgoose, R., Atherton, E., Webb, S. & Wraith, D.C. An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. Int. Immunol. 5, 1151–1158 (1993).

    Article  CAS  Google Scholar 

  23. Pu, Z., Lovitch, S.B., Bikoff, E.K. & Unanue, E.R. T cells distinguish MHC-peptide complexes formed in separate vesicles and edited by H2-DM. Immunity 20, 467–476 (2004).

    Article  CAS  Google Scholar 

  24. Pu, Z., Carrero, J.A. & Unanue, E.R. Distinct recognition by two subsets of T cells of an MHC class II-peptide complex. Proc. Natl. Acad. Sci. USA 99, 8844–8849 (2002).

    Article  CAS  Google Scholar 

  25. Peterson, D.A., DiPaolo, R.J., Kanagawa, O. & Unanue, E.R. Quantitative analysis of the T cell repertoire that escapes negative selection. Immunity 11, 453–462 (1999).

    Article  CAS  Google Scholar 

  26. Lovitch, S.B., Walters, J.J., Gross, M.L. & Unanue, E.R. APCs present A beta(k)-derived peptides that are autoantigenic to type B T cells. J. Immunol. 170, 4155–4160 (2003).

    Article  CAS  Google Scholar 

  27. Kawamura, K., McLaughlin, K.A., Weissert, R. & Forsthuber, T.G. Myelin-reactive type B T cells and T cells specific for low-affinity MHC-binding myelin peptides escape tolerance in HLA-DR transgenic mice. J. Immunol. 181, 3202–3211 (2008).

    Article  CAS  Google Scholar 

  28. Calderon, B., Suri, A., Miller, M.J. & Unanue, E.R. Dendritic cells in islets of Langerhans constitutively present beta cell-derived peptides bound to their class II MHC molecules. Proc. Natl. Acad. Sci. USA 105, 6121–6126 (2008).

    Article  CAS  Google Scholar 

  29. Hutton, J.C. The insulin secretory granule. Diabetologia 32, 271–281 (1989).

    Article  CAS  Google Scholar 

  30. Haskins, K. Pathogenic T-cell clones in autoimmune diabetes: more lessons from the NOD mouse. Adv. Immunol. 87, 123–162 (2005).

    Article  CAS  Google Scholar 

  31. Dadaglio, G. et al. Characterization and quantification of peptide-MHC complexes produced from hen egg lysozyme using a monoclonal antibody. Immunity 6, 727–738 (1997).

    Article  CAS  Google Scholar 

  32. Hoglund, P. et al. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J. Exp. Med. 189, 331–339 (1999).

    Article  CAS  Google Scholar 

  33. Catalfamo, M. et al. HLA-DM and invariant chain are expressed by thyroid follicular cells, enabling the expression of compact DR molecules. Int. Immunol. 11, 269–277 (1999).

    Article  CAS  Google Scholar 

  34. Croizet, K. et al. Culture of dendritic cells from a nonlymphoid organ, the thyroid gland: evidence for TNFα dependent phenotypic changes of thyroid-derived dendritic cells. Lab. Invest. 80, 1215–1225 (2000).

    Article  CAS  Google Scholar 

  35. Gray, D. et al. Unbiased analysis, enrichment and purification of thymic stromal cells. J. Immunol. Methods 329, 56–66 (2008).

    Article  CAS  Google Scholar 

  36. Brunner, Y. et al. Proteomics analysis of insulin secretory granules. Mol. Cell. Proteomics 6, 1007–1017 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Bittner and K. Frederick for technical assistance; R. Belizaire and M. Colonna for comments on the manuscript; M. Gross and H. Rohrs for mass spectrometry; K. Green for electron microscopy; G.S. Eisenbarth and N. Abiru (University of Colorado) for the M12.C3.G7β9-23 cell line; and E. Leiter (Jackson Laboratory) for NIT-1 cells. Supported by National Institutes of Health (AI024742, DK058177 and P60DK20579), the Juvenile Diabetes Research Foundation (JDRF 1-2007-731) and the Kilo Diabetes and Vascular Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.F.M., M.G.L. and E.R.U. designed and evaluated the experimental work; J.F.M., M.G.L. and J.W.H. did most of the cellular experiments; B.C. did immunofluorescence and confocal microscopy; S.J.P. isolated insulin granules for mass spectrometry and quantified insulin content in granules; and J.F.M. and E.R.U. wrote the manuscript.

Corresponding author

Correspondence to Emil R Unanue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, J., Levisetti, M., Calderon, B. et al. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol 11, 350–354 (2010). https://doi.org/10.1038/ni.1850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing