Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis

A Corrigendum to this article was published on 01 June 2010

This article has been updated

Abstract

Interleukin 17 (IL-17)-producing T helper cells (TH-17 cells) are increasingly recognized as key participants in various autoimmune diseases, including multiple sclerosis. Although sets of transcription factors and cytokines are known to regulate TH-17 differentiation, the role of noncoding RNA is poorly understood. Here we identify a TH-17 cell–associated microRNA, miR-326, whose expression was highly correlated with disease severity in patients with multiple sclerosis and mice with experimental autoimmune encephalomyelitis (EAE). In vivo silencing of miR-326 resulted in fewer TH-17 cells and mild EAE, and its overexpression led to more TH-17 cells and severe EAE. We also found that miR-326 promoted TH-17 differentiation by targeting Ets-1, a negative regulator of TH-17 differentiation. Our data show a critical role for microRNA in TH-17 differentiation and the pathogenesis of multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upregulation of miR-326 in patients with multiple sclerosis.
Figure 2: Regulation of EAE development by miR-326.
Figure 3: In vivo generation of TH-17 cells in EAE mice is enhanced by miR-326.
Figure 4: Promotion of in vitro TH-17 differentiation by miR-326.
Figure 5: Ets-1 is a functional target of miR-326.

Similar content being viewed by others

Change history

  • 04 December 2009

    In the version of this article initially published, the Actin loading control blot for the top blot is missing from Figure 5c. The error has been corrected in the HTML and PDF versions of the article. In the version of the ONLINE METHODS originally posted online, the description of the lentiviral vector was incorrect. The text in the left column, line 28, should read "...was cloned, downstream of the cytomegalovirus promoter, into a modified lentiviral vector generated from pCDH-CMVMCS-EF1-copGFP (CD511B-1; System Bioscience), in which EF1-copGFP was replaced with IRES-eGFP." The error has been corrected in the HTML and PDF versions of the article.

References

  1. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  Google Scholar 

  2. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  Google Scholar 

  3. Zhou, L. & Littman, D.R. Transcriptional regulatory networks in Th17 cell differentiation. Curr. Opin. Immunol. 21, 146–152 (2009).

    Article  Google Scholar 

  4. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  Google Scholar 

  5. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    Article  Google Scholar 

  6. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  Google Scholar 

  7. Moisan, J., Grenningloh, R., Bettelli, E., Oukka, M. & Ho, I.C. Ets-1 is a negative regulator of Th17 differentiation. J. Exp. Med. 204, 2825–2835 (2007).

    Article  CAS  Google Scholar 

  8. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    Article  Google Scholar 

  9. Frohman, E.M., Racke, M.K. & Raine, C.S. Multiple sclerosis–the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955 (2006).

    Article  CAS  Google Scholar 

  10. Kantarci, O.H. Genetics and natural history of multiple sclerosis. Semin. Neurol. 28, 7–16 (2008).

    Article  Google Scholar 

  11. Polman, C.H. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 58, 840–846 (2005).

    Article  Google Scholar 

  12. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747 (2005).

    Article  CAS  Google Scholar 

  13. Pettinelli, C.B. & McFarlin, D.E. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt1+2 T lymphocytes. J. Immunol. 127, 1420–1423 (1981).

    CAS  PubMed  Google Scholar 

  14. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  15. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  16. Tzartos, J.S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    Article  CAS  Google Scholar 

  17. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  18. Ma, L., Teruya-Feldstein, J. & Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  Google Scholar 

  19. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    Article  CAS  Google Scholar 

  20. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  Google Scholar 

  21. Slack, F.J. & Weidhaas, J.B. MicroRNA in cancer prognosis. N. Engl. J. Med. 359, 2720–2722 (2008).

    Article  CAS  Google Scholar 

  22. Zhou, X. et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983–1991 (2008).

    Article  CAS  Google Scholar 

  23. Chong, M.M., Rasmussen, J.P., Rudensky, A.Y. & Littman, D.R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205, 2005–2017 (2008).

    Article  CAS  Google Scholar 

  24. Wingerchuk, D.M., Lennon, V.A., Lucchinetti, C.F., Pittock, S.J. & Weinshenker, B.G. The spectrum of neuromyelitis optica. Lancet Neurol. 6, 805–815 (2007).

    Article  CAS  Google Scholar 

  25. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  26. Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  Google Scholar 

  27. Pan, D. et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol. Ther. 6, 19–29 (2002).

    Article  CAS  Google Scholar 

  28. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  29. John, B., Sander, C. & Marks, D.S. Prediction of human microRNA targets. Methods Mol. Biol. 342, 101–113 (2006).

    CAS  PubMed  Google Scholar 

  30. Tesmer, L.A., Lundy, S.K., Sarkar, S. & Fox, D.A. Th17 cells in human disease. Immunol. Rev. 223, 87–113 (2008).

    Article  CAS  Google Scholar 

  31. Miossec, P., Korn, T. & Kuchroo, V.K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–898 (2009).

    Article  CAS  Google Scholar 

  32. Lennon, V.A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).

    Article  CAS  Google Scholar 

  33. Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009).

    Article  CAS  Google Scholar 

  34. Hoefig, K.P. & Heissmeyer, V. MicroRNAs grow up in the immune system. Curr. Opin. Immunol. 20, 281–287 (2008).

    Article  CAS  Google Scholar 

  35. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    Article  CAS  Google Scholar 

  36. Lin, Y.C. et al. c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol. Biol. Evol. 25, 2189–2198 (2008).

    Article  CAS  Google Scholar 

  37. Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007).

    Article  CAS  Google Scholar 

  38. Schrempf, W. & Ziemssen, T. Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun. Rev. 6, 469–475 (2007).

    Article  CAS  Google Scholar 

  39. Brusaferri, F. & Candelise, L. Steroids for multiple sclerosis and optic neuritis: a meta-analysis of randomized controlled clinical trials. J. Neurol. 247, 435–442 (2000).

    Article  CAS  Google Scholar 

  40. Stromnes, I.M. & Goverman, J.M. Active induction of experimental allergic encephalomyelitis. Nat. Protoc. 1, 1810–1819 (2006).

    Article  CAS  Google Scholar 

  41. Chen, J.F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Dong (Anderson Cancer Center, Houston) for retrovector RV-GFP; X. Liu (Shanghai Institute for Biological Sciences) for fluorescein isothiocyanate–conjugated antibody to mouse T cell antigen receptor γδ; C. Wu (Sun Yat-sen University) for phycoerythrin-conjugated antibody to human CCR6; J. Zhao, L. Wei, Y. Shi, Q. Jing and G. Gao for discussions; and J. Zou, S. Xin, X. Zeng and S. Chen for technical assistance. Supported by the Ministry of Science and Technology (2005CB522406 and 2009CB941100), the National Natural Science Foundation of China (30621091, 30625014, 30623003, 30871285, 90713047 and 90919028), the Shanghai Municipal Commission for Science and Technology (07PJ14099) and the Chinese Academy of Sciences (2007KIP204 and SIBS2008001).

Author information

Authors and Affiliations

Authors

Contributions

C.D., C.L., J.K. and G.P. designed the study; C.D., C.L. and S.H. did the experiments; Z.Y. contributed to the bioinformatics analysis target prediction; Z.W., Z.L. and G.Z. provided clinical samples; G.P. supervised the project; and C.L., C.D. and J.K. contributed to the writing of the paper.

Corresponding author

Correspondence to Gang Pei.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Methods (PDF 1271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, C., Liu, C., Kang, J. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10, 1252–1259 (2009). https://doi.org/10.1038/ni.1798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing