Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defective survival of naive CD8+ T lymphocytes in the absence of the β3 regulatory subunit of voltage-gated calcium channels

Abstract

The survival of T lymphocytes requires sustained, Ca2+ influx–dependent gene expression. The molecular mechanism that governs sustained Ca2+ influx in naive T lymphocytes is unknown. Here we report an essential role for the β3 regulatory subunit of voltage-gated calcium (Cav) channels in the maintenance of naive CD8+ T cells. Deficiency in β3 resulted in a profound survival defect of CD8+ T cells. This defect correlated with depletion of the pore-forming subunit Cav1.4 and attenuation of T cell antigen receptor (TCR)-mediated global Ca2+ entry in CD8+ T cells. Cav1.4 and β3 associated with T cell signaling machinery and Cav1.4 localized in lipid rafts. Our data demonstrate a mechanism by which Ca2+ entry is controlled by a Cav1.4-β3 channel complex in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression analysis of pore-forming α-subunits and regulatory β-subunits of Cav channels.
Figure 2: Characterization of T cells from Cacnb3−/− mice.
Figure 3: The Ca2+-NFAT pathway is impaired in Cacnb3−/− CD8+ T cells.
Figure 4: Survival of naive CD8+ T cells requires the β3 subunit.
Figure 5: Homeostatic maintenance of naive CD8+ T cells is critically dependent on the β3 subunit.
Figure 6: Upregulation of Fas and downregulation of anti-apoptotic gene expression in Cacnb3−/− CD8+ T cells.
Figure 7: Defective CD8+ T cell–dependent in vivo effector response in Cacnb3−/− mice.
Figure 8: Lack of Cav1.4 pore-forming subunits in Cacnb3−/− naive CD8+ T cells.
Figure 9: Association of Cav1.4 and β3 with T cell signaling components and localization of Cav1.4 in lipid rafts.

Similar content being viewed by others

References

  1. Hogan, P.G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  Google Scholar 

  2. Gallo, E.M., Cante-Barrett, K. & Crabtree, G.R. Lymphocyte calcium signaling from membrane to nucleus. Nat. Immunol. 7, 25–32 (2006).

    Article  CAS  Google Scholar 

  3. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    Article  CAS  Google Scholar 

  4. Serfling, E. et al. The role of NF-AT transcription factors in T cell activation and differentiation. Biochim. Biophys. Acta 1498, 1–18 (2000).

    Article  CAS  Google Scholar 

  5. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    Article  CAS  Google Scholar 

  6. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  Google Scholar 

  7. Zhang, S.L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  Google Scholar 

  8. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  Google Scholar 

  9. Lewis, R.S. The molecular choreography of a store-operated calcium channel. Nature 446, 284–287 (2007).

    Article  CAS  Google Scholar 

  10. Vig, M. et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat. Immunol. 9, 89–96 (2008).

    Article  CAS  Google Scholar 

  11. Gwack, Y. et al. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol. Cell. Biol. 28, 5209–5222 (2008).

    Article  CAS  Google Scholar 

  12. Tareilus, E. et al. A Xenopus oocyte β subunit: evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proc. Natl. Acad. Sci. USA 94, 1703–1708 (1997).

    Article  CAS  Google Scholar 

  13. Bichet, D. et al. The I–II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190 (2000).

    Article  CAS  Google Scholar 

  14. Chien, A.J., Gao, T., Perez-Reyes, E. & Hosey, M.M. Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the β2a subunit. J. Biol. Chem. 273, 23590–23597 (1998).

    Article  CAS  Google Scholar 

  15. Gao, T., Chien, A.J. & Hosey, M.M. Complexes of the α1C and β subunits generate the necessary signal for membrane targeting of class C L-type calcium channels. J. Biol. Chem. 274, 2137–2144 (1999).

    Article  CAS  Google Scholar 

  16. Freise, D. et al. Mutations of calcium channel β subunit genes in mice. Biol. Chem. 380, 897–902 (1999).

    Article  CAS  Google Scholar 

  17. Stokes, L., Gordon, J. & Grafton, G. Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major alpha pore-forming and auxiliary beta-subunits. J. Biol. Chem. 279, 19566–19573 (2004).

    Article  CAS  Google Scholar 

  18. Gomes, B. et al. Lymphocyte calcium signaling involves dihydropyridine-sensitive L-type calcium channels: facts and controversies. Crit. Rev. Immunol. 24, 425–447 (2004).

    Article  CAS  Google Scholar 

  19. Badou, A. et al. Critical role for the β regulatory subunits of Cav channels in T lymphocyte function. Proc. Natl. Acad. Sci. USA 103, 15529–15534 (2006).

    Article  CAS  Google Scholar 

  20. Kotturi, M.F., Hunt, S.V. & Jefferies, W.A. Roles of CRAC and Cav-like channels in T cells: more than one gatekeeper? Trends Pharmacol. Sci. 27, 360–367 (2006).

    Article  CAS  Google Scholar 

  21. Matza, D. et al. A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 28, 64–74 (2008).

    Article  CAS  Google Scholar 

  22. Matza, D. et al. Requirement for AHNAK1-mediated calcium signaling during T lymphocyte cytolysis. Proc. Natl. Acad. Sci. USA 106, 9785–9790 (2009).

    Article  CAS  Google Scholar 

  23. Zweifach, A. Target-cell contact activates a highly selective capacitative calcium entry pathway in cytotoxic T lymphocytes. J. Cell Biol. 148, 603–614 (2000).

    Article  CAS  Google Scholar 

  24. Murakami, M. et al. Pain perception in mice lacking the β3 subunit of voltage-activated calcium channels. J. Biol. Chem. 277, 40342–40351 (2002).

    Article  CAS  Google Scholar 

  25. Sprent, J., Cho, J.H., Boyman, O. & Surh, C.D. T cell homeostasis. Immunol. Cell Biol. 86, 312–319 (2008).

    Article  CAS  Google Scholar 

  26. Park, J.H. et al. Suppression of IL7Rα transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302 (2004).

    Article  CAS  Google Scholar 

  27. Manicassamy, S. et al. Requirement of calcineurin a for the survival of naive T cells. J. Immunol. 180, 106–112 (2008).

    Article  CAS  Google Scholar 

  28. Ueffing, N., Schuster, M., Keil, E., Schulze-Osthoff, K. & Schmitz, I. Up-regulation of c-FLIP short by NFAT contributes to apoptosis resistance of short-term activated T cells. Blood 112, 690–698 (2008).

    Article  CAS  Google Scholar 

  29. Entschladen, F. et al. Signal transduction–receptors, mediators, and genes. Sci. Signal 2, mr3 (2009).

    Article  Google Scholar 

  30. Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L.M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol. 2, 316–324 (2001).

    Article  CAS  Google Scholar 

  31. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  32. Takahashi, S.X., Miriyala, J. & Colecraft, H.M. Membrane-associated guanylate kinase-like properties of β-subunits required for modulation of voltage-dependent Ca2+ channels. Proc. Natl. Acad. Sci. USA 101, 7193–7198 (2004).

    Article  CAS  Google Scholar 

  33. He, L.L., Zhang, Y., Chen, Y.H., Yamada, Y. & Yang, J. Functional modularity of the β-subunit of voltage-gated Ca2+ channels. Biophys. J. 93, 834–845 (2007).

    Article  CAS  Google Scholar 

  34. Doering, C.J. et al. Modified Cav1.4 expression in the Cacna1fnob2 mouse due to alternative splicing of an ETn inserted in exon 2. PLoS One 3, e2538 (2008).

    Article  Google Scholar 

  35. Hayashi, K. & Altman, A. Filamin A is required for T cell activation mediated by protein kinase C-θ. J. Immunol. 177, 1721–1728 (2006).

    Article  CAS  Google Scholar 

  36. Tavano, R. et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat. Cell Biol. 8, 1270–1276 (2006).

    Article  CAS  Google Scholar 

  37. Seminario, M.C. & Bunnell, S.C. Signal initiation in T-cell receptor microclusters. Immunol. Rev. 221, 90–106 (2008).

    Article  CAS  Google Scholar 

  38. Markiewicz, M.A., Brown, I. & Gajewski, T.F. Death of peripheral CD8+ T cells in the absence of MHC class I is Fas-dependent and not blocked by Bcl-xL. Eur. J. Immunol. 33, 2917–2926 (2003).

    Article  CAS  Google Scholar 

  39. Chuvpilo, S. et al. Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 16, 881–895 (2002).

    Article  CAS  Google Scholar 

  40. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  41. Pani, B. & Singh, B.B. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45, 625–633 (2009).

    Article  CAS  Google Scholar 

  42. Doering, C.J., Hamid, J., Simms, B., McRory, J.E. & Zamponi, G.W. Cav1.4 encodes a calcium channel with low open probability and unitary conductance. Biophys. J. 89, 3042–3048 (2005).

    Article  CAS  Google Scholar 

  43. Revy, P., Sospedra, M., Barbour, B. & Trautmann, A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2, 925–931 (2001).

    Article  CAS  Google Scholar 

  44. Weissgerber, P. et al. Reduced cardiac L-type Ca2+ current in Cavβ2−/− embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circ. Res. 99, 749–757 (2006).

    Article  CAS  Google Scholar 

  45. McRory, J.E. et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J. Neurosci. 24, 1707–1718 (2004).

    Article  CAS  Google Scholar 

  46. Kim, K.B., Lee, J.S. & Ko, Y.G. The isolation of detergent-resistant lipid rafts for two-dimensional electrophoresis. Methods Mol. Biol. 424, 413–422 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Eynon for suggestions; F. Manzo for preparing the manuscript; C. Rathinam for critical reading of the manuscript; D. Butkus for thymectomies; T. Taylor for fluorescence-activated cell sorting; and F. Balamuth for advice on lipid raft isolation. Supported by the Arthritis Foundation (M.K.J.), the Fondation pour la Recherche Médicale (A.B.), the Arthritis National Research Foundation (A.B.), Deutsche Forschungsgemeinschaft (V.F. and M.F.), Homburger Forschungsförderungsprogramm (V.F. and M.F.), the Canadian Institutes of Health Research (J.E.M.) and the Howard Hughes Medical Institute (M.K.J., A.B. and R.A.F.).

Author information

Authors and Affiliations

Authors

Contributions

M.K.J. conceived of, designed and did all experiments, except Ca2+ imaging, and wrote the paper; A.B. did and analyzed Ca2+ imaging experiments; A.B., M.M., J.E.M., M.F. and V.F. contributed reagents and edited the manuscript and R.A.F. provided overall directions, supervised the project and wrote the paper.

Corresponding author

Correspondence to Richard A Flavell.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, M., Badou, A., Meissner, M. et al. Defective survival of naive CD8+ T lymphocytes in the absence of the β3 regulatory subunit of voltage-gated calcium channels. Nat Immunol 10, 1275–1282 (2009). https://doi.org/10.1038/ni.1793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing