Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Crohn's disease–associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1

Abstract

A common mutation in the gene encoding the cytoplasmic sensor Nod2, involving a frameshift insertion at nucleotide 3020 (3020insC), is strongly associated with Crohn's disease. How 3020insC contributes to this disease is a controversial issue. Clinical studies have identified defective production of interleukin 10 (IL-10) in patients with Crohn's disease who bear the 3020insC mutation, which suggests that 3020insC may be a loss-of-function mutation. However, here we found that 3020insC Nod2 mutant protein actively inhibited IL10 transcription. The 3020insC Nod2 mutant suppressed IL10 transcription by blocking phosphorylation of the nuclear ribonucleoprotein hnRNP-A1 via the mitogen-activated protein kinase p38. We confirmed impairment in phosphorylation of hnRNP-A1 and binding of hnRNP-A1 to the IL10 locus in peripheral blood mononuclear cells from patients with Crohn's disease who bear the 3020insC mutation and have lower production of IL-10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of Nod2 signaling on macrophage cytokine production.
Figure 2: Different effects of wild-type and 3020insC Nod2 on endogenous IL-10 expression in primary human monocytes.
Figure 3: Inhibition of IL10 transcription by 3020insC Nod2.
Figure 4: Human and mouse Nod2 mutant proteins have different transcriptional effects.
Figure 5: Binding of nuclear proteins to the NRE.
Figure 6: Stimulation of IL10 transcription by hnRNP-A1.
Figure 7: Binding of hnRNP-A1 to the IL10 NRE.
Figure 8: Nod2–hnRNP-A1 interaction and phosphorylation of hnRNP-A1 by p38.

Similar content being viewed by others

References

  1. Podolsky, D.K. Inflammatory bowel disease. N. Engl. J. Med. 347, 417–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Fuss, I.J., Boirivant, M., Lacy, B. & Strober, W. The interrelated roles of TGF-β and IL-10 in the regulation of experimental colitis. J. Immunol. 168, 900–908 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3, 371–382 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Ogura, Y. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812–4818 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Abbott, D.W., Wilkins, A., Asara, J.M. & Cantley, L.C. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217–2227 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Inohara, N. et al. An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275, 27823–27831 (2000).

    CAS  PubMed  Google Scholar 

  9. Hugot, J.P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Lesage, S. et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70, 845–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Seiderer, J. et al. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn's disease in clinical practice: results of a prospective study. Inflamm. Bowel Dis. 12, 1114–1121 (2006).

    Article  PubMed  Google Scholar 

  13. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Davidson, N.J. et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J. Exp. Med. 184, 241–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Sellon, R.K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kullberg, M.C. et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and γ interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Netea, M.G. et al. NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur. J. Immunol. 34, 2052–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Pauleau, A.L. & Murray, P.J. Role of nod2 in the response of macrophages to toll-like receptor agonists. Mol. Cell. Biol. 23, 7531–7539 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Netea, M.G. et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J. Immunol. 174, 6518–6523 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Cao, S., Liu, J., Song, L. & Ma, X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 174, 3484–3492 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Steiner, G., Skriner, K., Hassfeld, W. & Smolen, J.S. Clinical and immunological aspects of autoantibodies to RA33/hnRNP-A/B proteins–a link between RA, SLE and MCTD. Mol. Biol. Rep. 23, 167–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Caporali, R., Bugatti, S., Bruschi, E., Cavagna, L. & Montecucco, C. Autoantibodies to heterogeneous nuclear ribonucleoproteins. Autoimmunity 38, 25–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Jones, D.A. et al. Identification of autoantigens in psoriatic plaques using expression cloning. J. Invest. Dermatol. 123, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Netea, M.G. et al. NOD2 3020insC mutation and the pathogenesis of Crohn's disease: impaired IL-1β production points to a loss-of-function phenotype. Neth. J. Med. 63, 305–308 (2005).

    CAS  PubMed  Google Scholar 

  26. Brockstedt, E. et al. Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J. Biol. Chem. 273, 28057–28064 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, C. et al. The kinase p38α serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat. Immunol. 9, 1019–1027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buxade, M. et al. The Mnks are novel components in the control of TNF α biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23, 177–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Linde, K. et al. Card15 and Crohn's disease: healthy homozygous carriers of the 3020insC frameshift mutation. Am. J. Gastroenterol. 98, 613–617 (2003).

    Article  PubMed  Google Scholar 

  30. Yamazaki, K., Takazoe, M., Tanaka, T., Kazumori, T. & Nakamura, Y. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn's disease. J. Hum. Genet. 47, 469–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Wehkamp, J. et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 53, 1658–1664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kramer, M., Netea, M.G., de Jong, D.J., Kullberg, B.J. & Adema, G.J. Impaired dendritic cell function in Crohn's disease patients with NOD2 3020insC mutation. J. Leukoc. Biol. 79, 860–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. van Heel, D.A. et al. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's disease. Lancet 365, 1794–1796 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Holler, E. et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 104, 889–894 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe, T., Kitani, A., Murray, P.J. & Strober, W. NOD2 is a negative regulator of Toll-like receptor 2–mediated T helper type 1 responses. Nat. Immunol. 5, 800–808 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, J., Cao, S., Herman, L.M. & Ma, X. Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-γ-primed IL-12 production by IFN regulatory factor 1. J. Exp. Med. 198, 1265–1276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Netea, M.G. et al. NOD2 mediates induction of the antiinflammatory signals induced by TLR2-ligands: implications for Crohn's disease. Eur. J. Immunol. 34, 2052–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P.J. Murray (St. Jude Children's Research Hospital) for Nod2-knockout and control littermate mice; E. Pamer (Memorial Sloan-Kettering Cancer Center) for RICK-knockout (RIP2-knockout) and control mice; J.M. Park (Harvard University School of Medicine) for mice with conditional knockout of p38α; and G. Nunez (University of Michigan) for the mouse Nod2 expression vector and mouse 2939insC Nod2. Supported by the Broad Medical Research Program (IBD-210R2 to X.M.).

Author information

Authors and Affiliations

Authors

Contributions

E.N. contributed to the work in Figures 3,4,6,8; Y.H. contributed to the work in Figures 1, 2, 3, 4, 5, 6, 7; X.K. contributed to Figure 4; M.G.N. contributed to Figures 1,7,8; and X.M. contributed to the overall project.

Corresponding author

Correspondence to Xiaojing Ma.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 708 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noguchi, E., Homma, Y., Kang, X. et al. A Crohn's disease–associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol 10, 471–479 (2009). https://doi.org/10.1038/ni.1722

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing