Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling

Abstract

The kinases MSK1 and MSK2 are activated 'downstream' of the p38 and Erk1/2 mitogen-activated protein kinases. Here we found that MSK1 and MSK2 were needed to limit the production of proinflammatory cytokines in response to stimulation of primary macrophages with lipopolysaccharide. By inducing transcription of the mitogen-activated protein kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10, MSK1 and MSK2 exerted many negative feedback mechanisms. Deficiency in MSK1 and MSK2 prevented the binding of phosphorylated transcription factors CREB and ATF1 to the promoters of the genes encoding interleukin 10 and DUSP1. Mice doubly deficient in MSK1 and MSK2 were hypersensitive to lipopolysaccharide-induced endotoxic shock and showed prolonged inflammation in a model of toxic contact eczema induced by phorbol 12-myristate 13-acetate. Our results establish MSK1 and MSK2 as key components of negative feedback mechanisms needed to limit Toll-like receptor–driven inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MSK is activated by TLR signaling.
Figure 2: Deficiency in MSK1 and MSK2 results in more production of proinflammatory cytokines in response to LPS.
Figure 3: MSKs regulate Dusp1 transcription in macrophages.
Figure 4: MSK regulates LPS-induced IL-10 production.
Figure 5: MSK-induced IL-10 production inhibits IL-6 and IL-12 production.
Figure 6: Il10 and Dusp1 promoters associate with phosphorylated CREB and/or ATF1.
Figure 7: Involvement of MSK1 and MSK2 in the sensitivity of mice to inflammation in vivo.
Figure 8: Involvement of MSK1 and MSK2 in the sensitivity of mice to PMA-induced eczema.

Similar content being viewed by others

References

  1. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  Google Scholar 

  2. Miggin, S.M. & O'Neill, L.A. New insights into the regulation of TLR signaling. J. Leukoc. Biol. 80, 220–226 (2006).

    Article  CAS  Google Scholar 

  3. Lee, M.S. & Kim, Y.J. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76, 447–480 (2007).

    Article  CAS  Google Scholar 

  4. Han, J., Lee, J.D., Bibbs, L. & Ulevitch, R.J.A. MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  Google Scholar 

  5. Freshney, N.W. et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049 (1994).

    Article  CAS  Google Scholar 

  6. Rouse, J. et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–1037 (1994).

    Article  CAS  Google Scholar 

  7. Cuenda, A. et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233 (1995).

    Article  CAS  Google Scholar 

  8. Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    Article  CAS  Google Scholar 

  9. O'Keefe, S.J. et al. Chemical genetics define the roles of p38α and p38 in acute and chronic inflammation. J. Biol. Chem. 282, 34663–34671 (2007).

    Article  CAS  Google Scholar 

  10. Beardmore, V.A. et al. Generation and characterization of p38β (MAPK11) gene-targeted mice. Mol. Cell. Biol. 25, 10454–10464 (2005).

    Article  CAS  Google Scholar 

  11. Kang, Y.J. et al. Macrophage deletion of p38α partially impairs lipopolysaccharide-induced cellular activation. J. Immunol. 180, 5075–5082 (2008).

    Article  CAS  Google Scholar 

  12. Lang, T. & Mansell, A. The negative regulation of Toll-like receptor and associated pathways. Immunol. Cell Biol. 85, 425–434 (2007).

    Article  CAS  Google Scholar 

  13. Dambach, D.M. Potential adverse effects associated with inhibition of p38α/β MAP kinases. Curr. Top. Med. Chem. 5, 929–939 (2005).

    Article  CAS  Google Scholar 

  14. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  15. Cheung, P.C., Campbell, D.G., Nebreda, A.R. & Cohen, P. Feedback control of the protein kinase TAK1 by SAPK2a/p38α. EMBO J. 22, 5793–5805 (2003).

    Article  CAS  Google Scholar 

  16. Chen, P. et al. Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J. Immunol. 169, 6408–6416 (2002).

    Article  CAS  Google Scholar 

  17. Salojin, K.V. et al. Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J. Immunol. 176, 1899–1907 (2006).

    Article  CAS  Google Scholar 

  18. Chi, H. et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc. Natl. Acad. Sci. USA 103, 2274–2279 (2006).

    Article  CAS  Google Scholar 

  19. Zhao, Q. et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J. Exp. Med. 203, 131–140 (2006).

    Article  CAS  Google Scholar 

  20. Hammer, M. et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J. Exp. Med. 203, 15–20 (2006).

    Article  CAS  Google Scholar 

  21. Arthur, J.S. MSK activation and physiological roles. Front. Biosci. 13, 5866–5879 (2008).

    Article  CAS  Google Scholar 

  22. Wiggin, G.R. et al. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell. Biol. 22, 2871–2881 (2002).

    Article  CAS  Google Scholar 

  23. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    Article  CAS  Google Scholar 

  24. Arthur, J.S. et al. Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J. Neurosci. 24, 4324–4332 (2004).

    Article  CAS  Google Scholar 

  25. Darragh, J. et al. MSKs are required for the transcription of the nuclear orphan receptors Nur77, Nurr1 and Nor1 downstream of MAPK signalling. Biochem. J. 390, 749–759 (2005).

    Article  CAS  Google Scholar 

  26. Zhang, X., Edwards, J.P. & Mosser, D.M. Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription. J. Immunol. 177, 1282–1288 (2006).

    Article  CAS  Google Scholar 

  27. Murray, P.J. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr. Opin. Pharmacol. 6, 379–386 (2006).

    Article  CAS  Google Scholar 

  28. Carl, V.S., Gautam, J.K., Comeau, L.D. & Smith, M.F. Jr. Role of endogenous IL-10 in LPS-induced STAT3 activation and IL-1 receptor antagonist gene expression. J. Leukoc. Biol. 76, 735–742 (2004).

    Article  CAS  Google Scholar 

  29. Stiles, B.G., Campbell, Y.G., Castle, R.M. & Grove, S.A. Correlation of temperature and toxicity in murine studies of staphylococcal enterotoxins and toxic shock syndrome toxin 1. Infect. Immun. 67, 1521–1525 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rittirsch, D., Hoesel, L.M. & Ward, P.A. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol. 81, 137–143 (2007).

    Article  CAS  Google Scholar 

  31. Brook, M. et al. Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol. Cell. Biol. 26, 2408–2418 (2006).

    Article  CAS  Google Scholar 

  32. Sommer, A., Burkhart, H., Keyse, S.M. & Luscher, B. Synergistic activation of the mkp-1 gene by protein kinase A signaling and USF, but not c-Myc. FEBS Lett. 474, 146–150 (2000).

    Article  CAS  Google Scholar 

  33. Platzer, C. et al. Cyclic adenosine monophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells. Eur. J. Immunol. 29, 3098–3104 (1999).

    Article  CAS  Google Scholar 

  34. Saraiva, M. et al. Identification of a macrophage-specific chromatin signature in the IL-10 locus. J. Immunol. 175, 1041–1046 (2005).

    Article  CAS  Google Scholar 

  35. Park, J.M. et al. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis—CREB and NF-κB as key regulators. Immunity 23, 319–329 (2005).

    Article  CAS  Google Scholar 

  36. Echtenacher, B., Freudenberg, M.A., Jack, R.S. & Mannel, D.N. Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis. Infect. Immun. 69, 7271–7276 (2001).

    Article  CAS  Google Scholar 

  37. Peck-Palmer, O.M. et al. Deletion of MyD88 markedly attenuates sepsis-induced T and B lymphocyte apoptosis but worsens survival. J. Leukoc. Biol. 83, 1009–1018 (2008).

    Article  CAS  Google Scholar 

  38. Riedamann, N.C., Guo, R. & Ward, P.A. The enigma of sepsis. J. Clin. Invest. 112, 460–467 (2003).

    Article  Google Scholar 

  39. Echtenacher, B., Falk, W., Mannel, D.N. & Krammer, P.H. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J. Immunol. 145, 3762–3766 (1990).

    CAS  PubMed  Google Scholar 

  40. Hildebrand, F., Pape, H.C., Hoevel, P., Krettek, C. & van Griensven, M. The importance of systemic cytokines in the pathogenesis of polymicrobial sepsis and dehydroepiandrosterone treatment in a rodent model. Shock 20, 338–346 (2003).

    Article  CAS  Google Scholar 

  41. van der Poll, T. et al. Endogenous IL-10 protects mice from death during septic peritonitis. J. Immunol. 155, 5397–5401 (1995).

    CAS  PubMed  Google Scholar 

  42. Latifi, S.Q., O'Riordan, M.A. & Levine, A.D. Interleukin-10 controls the onset of irreversible septic shock. Infect. Immun. 70, 4441–4446 (2002).

    Article  CAS  Google Scholar 

  43. Song, G.Y., Chung, C.S., Chaudry, I.H. & Ayala, A. What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery 126, 378–383 (1999).

    Article  CAS  Google Scholar 

  44. Kalechman, Y. et al. Anti-IL-10 therapeutic strategy using the immunomodulator AS101 in protecting mice from sepsis-induced death: dependence on timing of immunomodulating intervention. J. Immunol. 169, 384–392 (2002).

    Article  CAS  Google Scholar 

  45. Gogos, C.A., Drosou, E., Bassaris, H.P. & Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 181, 176–180 (2000).

    Article  CAS  Google Scholar 

  46. Moreno, S.E. et al. IL-12, but not IL-18, is critical to neutrophil activation and resistance to polymicrobial sepsis induced by cecal ligation and puncture. J. Immunol. 177, 3218–3224 (2006).

    Article  CAS  Google Scholar 

  47. Steinhauser, M.L., Hogaboam, C.M., Lukacs, N.W., Strieter, R.M. & Kunkel, S.L. Multiple roles for IL-12 in a model of acute septic peritonitis. J. Immunol. 162, 5437–5443 (1999).

    CAS  PubMed  Google Scholar 

  48. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  Google Scholar 

  49. Hubbard, W.J. et al. Cecal ligation and puncture. Shock 24, 52–57 (2005).

    Article  Google Scholar 

  50. Ottosen, E.R. et al. Synthesis and structure-activity relationship of aminobenzophenones. A novel class of p38 MAP kinase inhibitors with high antiinflammatory activity. J. Med. Chem. 46, 5651–5662 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. O'Garra (National Institute of Medical Research, London) for the IL-10-neutralizing antibody. Supported by the UK Medical Research Council, Arthritis Research Campaign, Novo Nordic Foundation, Danish Research Agency, Astra-Zeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck, and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Simon C Arthur.

Ethics declarations

Competing interests

The kinases MSK1 and MSK2 act as negative regulators of Toll–like receptor signaling

Olga Ananieva, Joanne Darragh, Claus Johansen, Julia M Carr, Joanne McIlrath, Jin Mo Park, Andrew Wingate, Claire E Monk, Rachel Toth, Susana G Santos, Lars Iversen and J Simon C Arthur

Supported in part by the Division of Signal Transduction Therapy (Dundee), which is funded by Astra-Zeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck and Pfizer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Table 1 and Methods (PDF 2874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananieva, O., Darragh, J., Johansen, C. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat Immunol 9, 1028–1036 (2008). https://doi.org/10.1038/ni.1644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing