Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors

Abstract

The physiological function of the adaptor protein TRADD remains unclear because of the unavailability of a TRADD-deficient animal model. By generating TRADD-deficient mice, we found here that TRADD serves an important function in tumor necrosis factor receptor 1 (TNFR1) signaling by orchestrating the formation of TNFR1 signaling complexes. TRADD was essential for TNFR1 signaling in mouse embryonic fibroblasts but was partially dispensable in macrophages; abundant expression of the adaptor RIP in macrophages may have allowed some transmission of TNFR1 signals in the absence of TRADD. Although morphologically normal, TRADD-deficient mice were resistant to toxicity induced by TNF, lipopolysaccharide and polyinosinic-polycytidylic acid. TRADD was also required for TRIF-dependent Toll-like receptor signaling in mouse embryonic fibroblasts but not macrophages. Our findings definitively establish the biological function of TRADD in TNF signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistance of Tradd−/− mice to TNF cytotoxicity in vivo.
Figure 2: TNFR1-mediated signaling is abolished in Tradd−/− MEFs.
Figure 3: TRADD is essential for the formation of a functional TNFR1 signaling complex in MEFs.
Figure 4: TRADD contributes to TNF signaling in macrophages.
Figure 5: Resistance of Tradd−/− mice to toxicity resulting from LPS and poly(I:C) in the presence of GalN.
Figure 6: TRADD is involved in TLR3 and TLR4 signaling in MEFs.

Similar content being viewed by others

References

  1. Tartaglia, L.A. & Goeddel, D.V. Two TNF receptors. Immunol. Today 13, 151–153 (1992).

    Article  CAS  Google Scholar 

  2. Tracey, K.J. & Cerami, A. Tumor necrosis factor, other cytokines and disease. Annu. Rev. Cell Biol. 9, 317–343 (1993).

    Article  CAS  Google Scholar 

  3. Baeuerle, P.A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13–20 (1996).

    Article  CAS  Google Scholar 

  4. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    Article  CAS  Google Scholar 

  5. Baud, V. & Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11, 372–377 (2001).

    Article  CAS  Google Scholar 

  6. Chen, G. & Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    Article  CAS  Google Scholar 

  7. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65 (2003).

    Article  CAS  Google Scholar 

  8. Locksley, R.M., Killeen, N. & Lenardo, M.L. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  Google Scholar 

  9. Hsu, H., Xiong, J. & Goeddel, D.V. The TNF receptor-1 associated protein TRADD signals cell death and NF-B activation. Cell 81, 495–504 (1995).

    Article  CAS  Google Scholar 

  10. Hsu, H., Shu, H.B., Pan, M.P. & Goeddel, D.V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  Google Scholar 

  11. Hsu, H., Huang, J., Shu, H.B., Baichwal, V. & Goeddel, D.V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  Google Scholar 

  12. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  Google Scholar 

  13. Yeh, W.C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 (1997).

    Article  CAS  Google Scholar 

  14. Yeh, W.C. et al. FADD: Essential for embryo development and sygnaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  Google Scholar 

  15. Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  Google Scholar 

  16. Kelliher, M.A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  Google Scholar 

  17. Devin, A., Lin, Y. & Liu, Z.G. The role of the death-domain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 4, 623–627 (2003).

    Article  CAS  Google Scholar 

  18. Lin, Y. et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822–10828 (2004).

    Article  CAS  Google Scholar 

  19. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    Article  CAS  Google Scholar 

  20. Devin, A. et al. The distinct roles of TRAF2 and RIP in IKK activation by TNFRI: TRAF2 recruits IKK to TNFRI while RIP mediates IKK activation. Immunity 12, 419–429 (2000).

    Article  CAS  Google Scholar 

  21. Zhang, S.Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).

    Article  CAS  Google Scholar 

  22. Zhu, G., Wu, C.J., Zhao, Y. & Ashwell, J.D. Optineurin negatively regulates TNFα- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 17, 1438–1443 (2007).

    Article  CAS  Google Scholar 

  23. Kim, Y., Morgan, M.J., Choksi, S. & Liu, Z.G. TNF-induced activation of the Nox1 NADPH oxidase and its role in the Induction of necrotic cell death. Mol. Cell 26, 769–771 (2007).

    Article  Google Scholar 

  24. Jin, Z. & El-Deiry, W.S. Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol. Cell. Biol. 26, 8136–8148 (2006).

    Article  CAS  Google Scholar 

  25. Zheng, L. et al. Competetive Control of independent programs of tumor necrosis facor-induced cell death by TRADD and RIP1. Mol. Cell. Biol. 26, 3505–3513 (2006).

    Article  CAS  Google Scholar 

  26. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  Google Scholar 

  27. Tiegs, G., Wolter, M. & Wendel, A. Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin-induced hepatitis in mice. Biochem. Pharmacol. 38, 627–631 (1989).

    Article  CAS  Google Scholar 

  28. Decker, K. & Keppler, D. Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev. Physiol. Biochem. Pharmaco. 71, 77–106 (1974).

    Article  CAS  Google Scholar 

  29. Fiers, W., Beyaert, R., Declercq, W. & Vandenabeele, P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719–7730 (1999).

    Article  CAS  Google Scholar 

  30. Lin, Y. et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein mediated reactive oxygen species accumulation. J. Biol. Chem. 279, 10822–10828 (2004).

    Article  CAS  Google Scholar 

  31. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  32. Tada, K. et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J. Biol. Chem. 276, 36530–36534 (2001).

    Article  CAS  Google Scholar 

  33. Nowak, M. et al. LPS-induced liver injury in d-galactosamine-sensitized mice requires secreted TNFα and TNF-p55 receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1202–R1209 (2000).

    Article  CAS  Google Scholar 

  34. Dejager, L. & Libert, C. Tumor necrosis factor α mediates the lethal hepatotoxic effects of poly(I:C) in d-galactosamine-sensitized mice. Cytokine 42, 55–61 (2008).

    Article  CAS  Google Scholar 

  35. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  Google Scholar 

  36. Yamamoto, M. et al. Role of adapter TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  37. Wesemann, D.R., Qin, H., Kokorina, N. & Benveniste, N.E. TRADD interacts with STAT1-α and influences interferon-γ signaling. Nat. Immunol. 5, 199–207 (2004).

    Article  CAS  Google Scholar 

  38. Meylan, E. et al. RIP1 is essential mediator of Toll-like receptor 3–induced NF-κB activation. Nat. Immunol. 5, 503–507 (2004).

    Article  CAS  Google Scholar 

  39. Cusson-Hermance, N., Khurana, S., Lee, T.H., Fitzgerald, K.A. & Kelliher, M. Rip1 mediates the Trif-dependent Toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    Article  CAS  Google Scholar 

  40. Michallet, M.-C. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651–661 (2008).

    Article  CAS  Google Scholar 

  41. Freshney, I.R. in Culture of Animal Cells 3rd edn. 131–132 (Wiley Liss, New York, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank W.C. Yeh and T.W. Mak (University of Toronto, Canada) for Traf2−/− MEFs; H. Nakano (Juntento University, Japan) for Traf5−/− and Traf2−/−Traf5−/− MEFs; L. Tessarollo (US National Cancer Institute) for the pLTM260 vector; A. Singer (US National Cancer Institute) for the pKO Scrambler 917 TK vector; and L. Pobezinsky for suggestions. Supported by the Intramural Research Program of Center for Cancer Research (US National Cancer Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenggang Liu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Table 1 and Methods (PDF 3485 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pobezinskaya, Y., Kim, YS., Choksi, S. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol 9, 1047–1054 (2008). https://doi.org/10.1038/ni.1639

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing