Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses

Abstract

Tumor necrosis factor receptor 1 (TNFR1) and Toll-like receptors (TLRs) regulate immune and inflammatory responses. Here we show that the TNFR1-associated death domain protein (TRADD) is critical in TNFR1, TLR3 and TLR4 signaling. TRADD deficiency abrogated TNF-induced apoptosis, prevented recruitment of the ubiquitin ligase TRAF2 and ubiquitination of the adaptor RIP1 in the TNFR1 signaling complex, and considerably inhibited but did not completely abolish activation of the transcription factor NF-κB and mitogen-activated protein kinases 'downstream' of TNFR1. TRIF-dependent cytokine production induced by the synthetic double-stranded RNA poly(I:C) and lipopolysaccharide was lower in TRADD-deficient mice than in wild-type mice. Moreover, TRADD deficiency inhibited poly(I:C)-mediated RIP1 ubiquitination and activation of NF-κB and mitogen-activated protein kinase signaling in fibroblasts but not in bone marrow macrophages. Thus, TRADD is an essential component of TNFR1 signaling and has a critical but apparently cell type–specific function in TRIF-dependent TLR responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRADD is required for efficient activation of NF-κB and MAPK downstream of TNFR1.
Figure 2: Impaired germinal center formation and antibody responses in TRADD-deficient mice after immunization with SRBCs.
Figure 3: TRADD is indispensable for TNF-induced apoptosis.
Figure 4: TRADD is important for NF-κB and MAPK activation induced by poly(I:C).
Figure 5: TRADD is important for NF-κB and MAPK activation by LPS.
Figure 6: TRADD acts as a partner of RIP1 and TRIF in TLR3 and TLR4 signaling.

Similar content being viewed by others

References

  1. Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    Article  CAS  Google Scholar 

  2. Muppidi, J.R., Tschopp, J. & Siegel, R.M. Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21, 461–465 (2004).

    Article  CAS  Google Scholar 

  3. Chen, G. & Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    Article  CAS  Google Scholar 

  4. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  5. Varfolomeev, E.E. & Ashkenazi, A. Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491–497 (2004).

    Article  CAS  Google Scholar 

  6. Hsu, H., Shu, H.B., Pan, M.G. & Goeddel, D.V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  Google Scholar 

  7. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  Google Scholar 

  8. Kelliher, M.A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  Google Scholar 

  9. Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  Google Scholar 

  10. Devin, A., Lin, Y. & Liu, Z.G. The role of the death-domain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 4, 623–627 (2003).

    Article  CAS  Google Scholar 

  11. Tada, K. et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J. Biol. Chem. 276, 36530–36534 (2001).

    Article  CAS  Google Scholar 

  12. Yeh, W.C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  Google Scholar 

  13. Hsu, H., Huang, J., Shu, H.B., Baichwal, V. & Goeddel, D.V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  Google Scholar 

  14. Zheng, L. et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol. Cell. Biol. 26, 3505–3513 (2006).

    Article  CAS  Google Scholar 

  15. Jin, Z. & El-Deiry, W.S. Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol. Cell. Biol. 26, 8136–8148 (2006).

    Article  CAS  Google Scholar 

  16. Schneider-Brachert, W. et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415–428 (2004).

    Article  CAS  Google Scholar 

  17. Schneider-Brachert, W. et al. Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J. Clin. Invest. 116, 2901–2913 (2006).

    Article  CAS  Google Scholar 

  18. Cusson-Hermance, N., Khurana, S., Lee, T.H., Fitzgerald, K.A. & Kelliher, M.A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    Article  CAS  Google Scholar 

  19. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3–induced NF-κB activation. Nat. Immunol. 5, 503–507 (2004).

    Article  CAS  Google Scholar 

  20. Schwenk, F., Baron, U. & Rajewsky, K. A Cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  21. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF α-deficient mice: a critical requirement for TNF α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  22. Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993).

    Article  CAS  Google Scholar 

  23. Lee, T.H., Shank, J., Cusson, N. & Kelliher, M.A. The kinase activity of Rip1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185–33191 (2004).

    Article  CAS  Google Scholar 

  24. Pasparakis, M., Alexopoulou, L., Douni, E. & Kollias, G. Tumour necrosis factors in immune regulation: everything that's interesting is...new! Cytokine Growth Factor Rev. 7, 223–229 (1996).

    Article  CAS  Google Scholar 

  25. Pasparakis, M., Kousteni, S., Peschon, J. & Kollias, G. Tumor necrosis factor and the p55TNF receptor are required for optimal development of the marginal sinus and for migration of follicular dendritic cell precursors into splenic follicles. Cell. Immunol. 201, 33–41 (2000).

    Article  CAS  Google Scholar 

  26. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  Google Scholar 

  27. Lehmann, V., Freudenberg, M.A. & Galanos, C. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J. Exp. Med. 165, 657–663 (1987).

    Article  CAS  Google Scholar 

  28. Gowen, B.B. et al. TLR3 is essential for the induction of protective immunity against Punta Toro Virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not poly(I:C): differential recognition of synthetic dsRNA molecules. J. Immunol. 178, 5200–5208 (2007).

    Article  CAS  Google Scholar 

  29. Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends. Mol. Med. 13, 460–469 (2007).

    Article  CAS  Google Scholar 

  30. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  31. Hsu, H., Xiong, J. & Goeddel, D.V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504 (1995).

    Article  CAS  Google Scholar 

  32. Li, H., Kobayashi, M., Blonska, M., You, Y. & Lin, X. Ubiquitination of RIP is required for tumor necrosis factor α-induced NF-κB activation. J. Biol. Chem. 281, 13636–13643 (2006).

    Article  CAS  Google Scholar 

  33. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    Article  CAS  Google Scholar 

  34. Michallet, M.C. et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651–661 (2008).

    Article  CAS  Google Scholar 

  35. Kontgen, F., Suss, G., Stewart, C., Steinmetz, M. & Bluethmann, H. Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int. Immunol. 5, 957–964 (1993).

    Article  CAS  Google Scholar 

  36. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  Google Scholar 

  37. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  Google Scholar 

  38. Kelly, B.S., Levy, J.G. & Sikora, L. The use of the enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of specific antibody from cell cultures. Immunology 37, 45–52 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Alexopoulou, L., Pasparakis, M. & Kollias, G. Complementation of lymphotoxin α knockout mice with tumor necrosis factor-expressing transgenes rectifies defective splenic structure and function. J. Exp. Med. 188, 745–754 (1998).

    Article  CAS  Google Scholar 

  40. Thome, M. et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curr. Biol. 8, 885–888 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Uthoff-Hachenberg and U. Karow for technical assistance; B. Coornaert and N. Hermance for advice on the RIP1 ubiquitination assays; C. Libert (Flanders Institute for Biotechnology) for recombinant TNF; K. Pfeffer (Heinrich-Heine University) for mice lacking TNFR1; S. Akira (Osaka University) for mice lacking MyD88; and D.V. Goeddel (Tularik) for pRK5-TRADD. Supported by the Sixth Research Framework Programme of the European Union (MUGEN (LSHG-CT-2005-005203) and IMDEMI (MRTN-CT-2004-005632)), Deutsche Forschungsgemeinschaft (SFB 670) and the Louis-Jeantet foundation (M.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.E. generated the TRADD-deficient mice and did most of the experiments; M.-C.M. did the experiments in Figures 1d and 6a,b and Supplementary Figure 3; N.P. contributed to the experiments in Figures 1c,e and 6c; K.K. did the experiments in Figure 2; O.U. supervised the in vivo listeria infection experiments; M.A.E., M.-C.M., N.P., K.K., G.K., J.T. and M.P. designed and analyzed the experiments; and M.A.E. and M.P. wrote the manuscript.

Corresponding author

Correspondence to Manolis Pasparakis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermolaeva, M., Michallet, MC., Papadopoulou, N. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9, 1037–1046 (2008). https://doi.org/10.1038/ni.1638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing