Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of regulatory functions for 4-1BB and 4-1BBL in myelopoiesis and the development of dendritic cells

Abstract

The costimulatory molecule 4-1BB and its ligand 4-1BBL can control adaptive immunity, but here we show that their interaction also suppressed myelopoiesis. We found that 4-1BBL was expressed on hematopoietic stem cells, differentiating common myeloid progenitors and granulocyte-macrophage progenitors, and 4-1BB was inducible on activated myeloid progenitors. Steady-state numbers of granulocyte-macrophage progenitors, myeloid-lineage cells and mature dendritic cells were higher in 4-1BB- and 4-1BBL-deficient mice, indicative of a negative function, and we confirmed that result with bone marrow chimeras and in vitro, where the absence of interactions between 4-1BB and 4-1BBL led to enhanced differentiation into dendritic cell lineages. The regulatory activity was mediated by 4-1BBL, with binding by 4-1BB inhibiting differentiation of myeloid progenitors. Thus, 4-1BB and 4-1BBL have a previously unknown function in limiting myelopoiesis and the development of dendritic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of 4-1BBL on hematopoietic stem cells and progenitors.
Figure 2: Enhanced frequency of GMPs and myeloid-lineage cells in the bone marrow and of DCs in the spleen in the absence of the 4-1BB–4-1BBL interaction.
Figure 3: Expression of 4-1BBL and 4-1BB on differentiating myeloid-lineage cells.
Figure 4: Interactions of 4-1BB and 4-1BBL negatively regulate myelopoiesis in vitro.
Figure 5: Myelopoiesis and development of DCs and B cells is limited by 4-1BB.
Figure 6: Enhanced myelopoiesis and development of DCs and B cells in the absence of 4-1BBL.
Figure 7: The accumulation of DCs in the lung is regulated by 4-1BB.
Figure 8: Interactions between 4-1BB and 4-1BBL limit the accumulation of bone marrow–derived DCs.

Similar content being viewed by others

References

  1. Kwon, B.S. & Weissman, S.M. cDNA sequences of two inducible T-cell genes. Proc. Natl. Acad. Sci. USA 86, 1963–1967 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goodwin, R.G. et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol. 23, 2631–2641 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Schwarz, H. Biological activities of reverse signal transduction through CD137 ligand. J. Leukoc. Biol. 77, 281–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Tan, J.T., Whitmire, J.K., Ahmed, R., Pearson, T.C. & Larsen, C.P. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J. Immunol. 163, 4859–4868 (1999).

    CAS  PubMed  Google Scholar 

  7. Bertram, E.M., Lau, P. & Watts, T.H. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J. Immunol. 168, 3777–3785 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kwon, B.S. et al. Immune responses in 4-1BB (CD137)-deficient mice. J. Immunol. 168, 5483–5490 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, S.W., Vella, A.T., Kwon, B.S. & Croft, M. Enhanced CD4 T cell responsiveness in the absence of 4-1BB. J. Immunol. 174, 6803–6808 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, S.W. et al. Functional dichotomy between OX40 and 4-1BB in modulating effector CD8 T cell responses. J. Immunol. 177, 4464–4472 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Vinay, D.S., Cha, K. & Kwon, B.S. Dual immunoregulatory pathways of 4-1BB signaling. J. Mol. Med. 84, 726–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Wilcox, R.A., Tamada, K., Strome, S.E. & Chen, L. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J. Immunol. 169, 4230–4236 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Wilcox, R.A. et al. Cutting edge: expression of functional CD137 receptor by dendritic cells. J. Immunol. 168, 4262–4267 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Futagawa, T. et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int. Immunol. 14, 275–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S.C. et al. 4-1BB (CD137) is required for rapid clearance of Listeria monocytogenes infection. Infect. Immun. 73, 5144–5151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishimoto, H. et al. Costimulation of mast cells by 4-1BB, a member of the tumor necrosis factor receptor superfamily, with the high-affinity IgE receptor. Blood 106, 4241–4248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeBenedette, M.A. et al. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J. Immunol. 163, 4833–4841 (1999).

    CAS  PubMed  Google Scholar 

  19. Zhu, G. et al. Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Eα)-transgenic mice. J. Immunol. 167, 2671–2676 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Iwasaki, H. & Akashi, K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26, 726–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Laiosa, C.V., Stadtfeld, M. & Graf, T. Determinants of lymphoid-myeloid lineage diversification. Annu. Rev. Immunol. 24, 705–738 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C.C., Grimbaldeston, M.A., Tsai, M., Weissman, I.L. & Galli, S.J. Identification of mast cell progenitors in adult mice. Proc. Natl. Acad. Sci. USA 102, 11408–11413 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shuford, W.W. et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med. 186, 47–55 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saito, K. et al. Infection-induced up-regulation of the costimulatory molecule 4-1BB in osteoblastic cells and its inhibitory effect on M-CSF/RANKL-induced in vitro osteoclastogenesis. J. Biol. Chem. 279, 13555–13563 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Shin, H.H., Lee, E.A., Kim, S.J., Kwon, B.S. & Choi, H.S. A signal through 4-1BB ligand inhibits receptor for activation of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis by increasing interferon (IFN)-β production. FEBS Lett. 580, 1601–1606 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7, 19–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. van Rijt, L.S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201, 981–991 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Heer, H.J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nikolic, T., de Bruijn, M.F., Lutz, M.B. & Leenen, P.J. Developmental stages of myeloid dendritic cells in mouse bone marrow. Int. Immunol. 15, 515–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Steptoe, R.J., Ritchie, J.M. & Harrison, L.C. Increased generation of dendritic cells from myeloid progenitors in autoimmune-prone nonobese diabetic mice. J. Immunol. 168, 5032–5041 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Shin, H.H., Lee, J.E. & Choi, H.S. Absence of 4-1BB increases cell influx into the peritoneal cavity in response to LPS stimulation by decreasing macrophage IL-10 levels. FEBS Lett. 581, 4355–4360 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz, H., Blanco, F.J., von Kempis, J., Valbracht, J. & Lotz, M. ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood 87, 2839–2845 (1996).

    CAS  PubMed  Google Scholar 

  40. Wu, L. & Liu, Y.J. Development of dendritic-cell lineages. Immunity 26, 741–750 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Landsman, L., Varol, C. & Jung, S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 178, 2000–2007 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Wiesmann, A. et al. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity 12, 193–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Nolte, M.A. et al. Immune activation modulates hematopoiesis through interactions between CD27 and CD70. Nat. Immunol. 6, 412–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22, 439–450 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Tang, Y. Adams, Y. Kinjo, W. Xiao, C. Hutter and B. Zhang for technical assistance. Supported by the US National Institutes of Health (AI42944 to M.C.; CA85860 and AI059290 to R.S.M.; AI050265 to H.C.; and EY013325 to B.S.K.), the Arthritis Foundation (B.S.K.), the Diabetes and Immune Disease National Research Institute (S.-W.L.), the Korean Research Foundation (2005-804-E00001 to B.S.K.), the Korean National Cancer Center (0890830-1 to B.S.K.) and the Crohn's and Colitis Foundation of America (Y.P.). This is manuscript 938 from the La Jolla Institute for Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Contributions

S.-W.L., Y.P., T.S., R.S.M. and M.C. designed the research and analyzed the data; S.-W.L., Y.P. and T.S. did the experiments at the La Jolla Institute for Allergy and Immunology; S.-W.L. did experiments as a visiting scientist with R.S.M. at Emory University; R.S.M., B.S.K. and H.C. contributed reagents and contributed to the preparation of the manuscript; and S.-W.L. and M.C. wrote the manuscript.

Corresponding author

Correspondence to Michael Croft.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SW., Park, Y., So, T. et al. Identification of regulatory functions for 4-1BB and 4-1BBL in myelopoiesis and the development of dendritic cells. Nat Immunol 9, 917–926 (2008). https://doi.org/10.1038/ni.1632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1632

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing