Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros

Abstract

The transcription factor Ikaros is essential for B cell development. However, its molecular functions in B cell fate specification and commitment have remained elusive. We show here that the transcription factor EBF restored the generation of CD19+ pro–B cells from Ikaros-deficient hematopoietic progenitors. Notably, these pro–B cells, despite having normal expression of the transcription factors EBF and Pax5, were not committed to the B cell fate. They also failed to recombine variable gene segments at the immunoglobulin heavy-chain locus. Ikaros promoted heavy-chain gene rearrangements by inducing expression of the recombination-activating genes as well as by controlling accessibility of the variable gene segments and compaction of the immunoglobulin heavy-chain locus. Thus, Ikaros is an obligate component of a network that regulates B cell fate commitment and immunoglobulin heavy-chain gene recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EBF expression restores the development of B cells from Ikzf1−/− hematopoietic progenitors.
Figure 2: Ikzf1−/− pro–B cells can trans-differentiate into macrophages.
Figure 3: Restoration of Ik-1 expression in Ikzf1−/− pro–B cells promotes B lineage commitment.
Figure 4: Restoration of Ik-1 expression in Ikzf1−/− pro–B cells induces Rag expression and VH-to-DJH rearrangements.
Figure 5: Ikaros binds to the Rag locus and regulates histone acetylation.
Figure 6: Ikaros regulates the accessibility of VH distal segments.
Figure 7: Ikaros is required for compaction of the Igh locus.

Similar content being viewed by others

References

  1. Singh, H., Medina, K.L. & Pongubala, J.M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4949–4953 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nutt, S.L. & Kee, B.L. The transcriptional regulation of B cell lineage commitment. Immunity 26, 715–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. DeKoter, R.P., Lee, H.J. & Singh, H. P.U. 1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Medina, K.L. et al. Assembling a gene regulatory network for specification of the B cell fate. Dev. Cell 7, 607–617 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Seet, C.S., Brumbaugh, R.L. & Kee, B.L. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J. Exp. Med. 199, 1689–1700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye, M., Ermakova, O. & Graf, T.P.U. 1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. J. Exp. Med. 202, 1411–1422 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Pongubala, J.M. et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat. Immunol. 9, 203–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Georgopoulos, K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat. Rev. Immunol. 2, 162–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Cobb, B.S. & Smale, S.T. Ikaros-family proteins: in search of molecular functions during lymphocyte development. Curr. Top. Microbiol. Immunol. 290, 29–47 (2005).

    CAS  PubMed  Google Scholar 

  11. Molnar, A. & Georgopoulos, K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol. Cell. Biol. 14, 8292–8303 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelley, C.M. et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr. Biol. 8, 508–515 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Klug, C.A. et al. Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc. Natl. Acad. Sci. USA 95, 657–662 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J.H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190, 1201–1214 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida, T., Ng, S.Y., Zuniga-Pflucker, J.C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27, 49–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roessler, S. et al. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5. Mol. Cell. Biol. 27, 579–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Maier, H. et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat. Immunol. 5, 1069–1077 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Thompson, E.C. et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity 26, 335–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Jung, D., Giallourakis, C., Mostoslavsky, R. & Alt, F.W. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu. Rev. Immunol. 24, 541–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Oettinger, M.A., Jung, D., Giallourakis, C., Mostoslavsky, R. & Alt, F.W. How to keep V(D)J recombination under control: mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Immunol. Rev. 200, 165–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Fuller, K. & Storb, U. Identification and characterization of the murine Rag1 promoter. Mol. Immunol. 34, 939–954 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Lauring, J. & Schlissel, M.S. Distinct factors regulate the murine RAG-2 promoter in B- and T-cell lines. Mol. Cell. Biol. 19, 2601–2612 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, W. et al. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5′ of RAG2. Science 285, 1080–1084 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, X.C. et al. Characterization of chromatin structure and enhancer elements for murine recombination activating gene-2. J. Immunol. 169, 873–881 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Hsu, L.Y. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 19, 105–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Wei, X.C. et al. Characterization of the proximal enhancer element and transcriptional regulatory factors for murine recombination activating gene-2. Eur. J. Immunol. 35, 612–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bolland, D.J. et al. Antisense intergenic transcription in V(D)J recombination. Nat. Immunol. 5, 630–637 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Su, I.H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Bertolino, E. et al. Regulation of interleukin 7–dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat. Immunol. 6, 836–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, H. et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 21, 1179–1189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgan, B. et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Tagoh, H. et al. The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO J. 25, 1070–1080 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, W.C. & Desiderio, S. V(D)J recombination and the cell cycle. Immunol. Today 16, 279–289 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, K. et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28, 335–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, R., Medina, K.L., Lancki, D.W. & Singh, H. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Cobb, B.S. et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 14, 2146–2160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Medina, K.L. & Singh, H. Genetic networks that regulate B lymphopoiesis. Curr. Opin. Hematol. 12, 203–209 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Sitnicka, E. et al. Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med. 198, 1495–1506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trinh, L.A. et al. Down-regulation of TDT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev. 15, 1817–1832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown, K.E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Kirstetter, P., Thomas, M., Dierich, A., Kastner, P. & Chan, S. Ikaros is critical for B cell differentiation and function. Eur. J. Immunol. 32, 720–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat. Immunol. 7, 819–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Harker, N. et al. The CD8α gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Johnston, C.M., Wood, A.L., Bolland, D.J. & Corcoran, A.E. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J. Immunol. 176, 4221–4234 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Goldmit, M. et al. Epigenetic ontogeny of the Igk locus during B cell development. Nat. Immunol. 6, 198–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, Z. et al. A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin κ locus. Immunity 24, 405–415 (2006).

    Article  PubMed  Google Scholar 

  59. Kathrein, K.L., Lorenz, R., Innes, A.M., Griffiths, E. & Winandy, S. Ikaros induces quiescence and T-cell differentiation in a leukemia cell line. Mol. Cell. Biol. 25, 1645–1654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hahm, K. et al. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14, 7111–7123 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Singh lab for suggestions and comments. Plasmids pEBB-Rag1 and pEBB-Rag2 were gifts from D.G. Schatz (Yale University); Pax5−/− pro–B cells were a gift from M. Busslinger (Research Institute of Molecular Pathology). Supported by the Irvington Institute Fellowship program of the Cancer Research Institute (I.A.D.), the Research Council of Norway (H.Sc.), the China Scholarship Council (Z.C.), the National Institutes of Health (R01 DK43726 to S.T.S.) and the Howard Hughes Medical Institute (H.Si.).

Author information

Authors and Affiliations

Authors

Contributions

D.R. designed and did the experiments, analyzed data and wrote the manuscript; I.A.D. and K.L.R. contributed immuno-FISH data; H.Sc. did EMSA; Z.C. helped with RT-PCR analysis; E.B., S.T.S. and S.W. provided experimental advice; and H.Si. supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Harinder Singh.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Tables 1–6 (PDF 4881 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynaud, D., A Demarco, I., L Reddy, K. et al. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol 9, 927–936 (2008). https://doi.org/10.1038/ni.1626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing