Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells

Abstract

Ets-related gene (ERG), which encodes a member of the Ets family of transcription factors, is a potent oncogene. Chromosomal rearrangements involving ERG are found in acute myeloid leukemia, acute lymphoblastic leukemia, Ewing's sarcoma and more than half of all prostate cancers; however, the normal physiological function of Erg is unknown. We did a sensitized genetic screen of the mouse for regulators of hematopoietic stem cell function and report here a germline mutation of Erg. We show that Erg is required for definitive hematopoiesis, adult hematopoietic stem cell function and the maintenance of normal peripheral blood platelet numbers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutation of Erg causes many hematopoietic lineage defects.
Figure 2: The Mld2 mutation disrupts the transcriptional activity of Erg.
Figure 3: The Mld2 mutation results in fewer leukocytes, platelets and spleen colony-forming units.
Figure 4: The Mld2 mutation causes profound defects in the HSC compartment.
Figure 5: LT-HSC and ST-HSC defects in Erg+/Mld2 mice.
Figure 6: Erg is essential for definitive hematopoiesis.
Figure 7: Gene expression in Erg+/Mld2 LSK cells.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Cheng, J. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87, 479–490 (1996).

    CAS  PubMed  Google Scholar 

  2. Antonchuk, J., Hyland, C.D., Hilton, D.J. & Alexander, W.S. Synergistic effects on erythropoiesis, thrombopoiesis, and stem cell competitiveness in mice deficient in thrombopoietin and steel factor receptors. Blood 104, 1306–1313 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Ballmaier, M. et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 97, 139–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Ihara, K. et al. Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc. Natl. Acad. Sci. USA 96, 3132–3136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimura, S., Roberts, A.W., Metcalf, D. & Alexander, W.S. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc. Natl. Acad. Sci. USA 95, 1195–1200 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hrabe de Angelis, M.H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 25, 444–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kile, B.T. et al. Functional genetic analysis of mouse chromosome 11. Nature 425, 81–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Nelms, K.A. & Goodnow, C.C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Nolan, P.M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 25, 440–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Duterque-Coquillaud, M., Niel, C., Plaza, S. & Stehelin, D. New human erg isoforms generated by alternative splicing are transcriptional activators. Oncogene 8, 1865–1873 (1993).

    CAS  PubMed  Google Scholar 

  11. Shimizu, K. et al. An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc. Natl. Acad. Sci. USA 90, 10280–10284 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorensen, P.H. et al. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat. Genet. 6, 146–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Baldus, C.D. et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. Proc. Natl. Acad. Sci. USA 101, 3915–3920 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marcucci, G. et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J. Clin. Oncol. 23, 9234–9242 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Tomlins, S.A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Tomlins, S.A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Alexander, W.S., Roberts, A.W., Nicola, N.A., Li, R. & Metcalf, D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87, 2162–2170 (1996).

    CAS  PubMed  Google Scholar 

  19. Reddy, E.S. & Rao, V.N. Erg, an ets-related gene, codes for sequence-specific transcriptional activators. Oncogene 6, 2285–2289 (1991).

    CAS  PubMed  Google Scholar 

  20. Liang, H. et al. Solution structure of the ets domain of Fli-1 when bound to DNA. Nat. Struct. Biol. 1, 871–875 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Andersson, L.C., Nilsson, K. & Gahmberg, C.G. K562–a human erythroleukemic cell line. Int. J. Cancer 23, 143–147 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Rainis, L. et al. The proto-oncogene ERG in megakaryoblastic leukemias. Cancer Res. 65, 7596–7602 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Carrere, S., Verger, A., Flourens, A., Stehelin, D. & Duterque-Coquillaud, M. Erg proteins, transcription factors of the Ets family, form homo, heterodimers and ternary complexes via two distinct domains. Oncogene 16, 3261–3268 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Spyropoulos, D.D. et al. Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol. Cell. Biol. 20, 5643–5652 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hart, A. et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13, 167–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anderson, M.K., Hernandez-Hoyos, G., Diamond, R.A. & Rothenberg, E.V. Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126, 3131–3148 (1999).

    CAS  PubMed  Google Scholar 

  28. Okada, S. et al. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80, 3044–3050 (1992).

    CAS  PubMed  Google Scholar 

  29. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, L. et al. Identification of LinSca1+kit+CD34+Flt3 short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105, 2717–2723 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Buttice, G. et al. Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun complex. Oncogene 13, 2297–2306 (1996).

    CAS  PubMed  Google Scholar 

  32. McLaughlin, F. et al. Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood 98, 3332–3339 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Pimanda, J.E. et al. Endoglin expression in the endothelium is regulated by Fli-1, Erg, and Elf-1 acting on the promoter and a -8-kb enhancer. Blood 107, 4737–4745 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Forsberg, E.C. et al. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet. 1, e28 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bryder, D., Rossi, D.J. & Weissman, I.L. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol. 169, 338–346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Nottingham, W.T. et al. Runx1-mediated hematopoietic stem cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110, 4188–4197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hollenhorst, P.C., Shah, A.A., Hopkins, C. & Graves, B.J. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 21, 1882–1894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ichikawa, M. et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Pimanda, J.E. et al. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc. Natl. Acad. Sci. USA 104, 17692–17697 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robb, L. et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA 92, 7075–7079 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Mikkola, H.K. et al. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421, 547–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hitzler, J.K. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer 5, 11–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Hitzler, J.K., Cheung, J., Li, Y., Scherer, S.W. & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 101, 4301–4304 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Mundschau, G. et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 101, 4298–4300 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Miyoshi, H. et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 88, 10431–10434 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kirsammer, G. et al. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood 111, 767–775 (2007).

    Article  PubMed  Google Scholar 

  51. Bode, V.C. Ethylnitrosourea mutagenesis and the isolation of mutant alleles for specific genes located in the T region of mouse chromosome 17. Genetics 108, 457–470 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. O'Reilly, L.A. et al. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ. 8, 486–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Alexander, W.S., Metcalf, D. & Dunn, A.R. Point mutations within a dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity. EMBO J. 14, 5569–5578 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Darzynkiewicz, Z., Juan, G. & Srour, E. in Current Protocols in Cytometry. (ed. Robinson, J.P.) 7.3.1–7.3.16 (John Wiley and Sons, Hoboken, NJ, 2004).

    Google Scholar 

  55. Voss, A.K., Thomas, T. & Gruss, P. Mice lacking HSP90β fail to develop a placental labyrinth. Development 127, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  56. Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J.L. & Anderson, D.J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469–482 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, S.M., Du, P., Huber, W. & Kibbe, W.A. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36, e11 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3 Issue 1, Article 3 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Corbin and J. Lochland for technical assistance; S. Guzzardi, S. Ross, M. Salzone, C. Evans, P. Pavlidis and K. Trueman for animal husbandry; and D.K. Watson (Medical University of South Carolina) for mice with deletion of the Fli-1 activation domain. Supported by the National Health and Medical Research Council of Australia (grants 461219 and 516726; fellowships to D.J.H., W.S.A. and D.F.H.), the Australian Stem Cell Centre (project 047), the Australian Phenomics Network, the Australian Research Council (B.T.K.), the Australian Department of Education, Science and Training (S.J.L. and C.A.d.G.), the University of Melbourne (E.A.K.), the Cancer Council of Victoria (D.M.) and MuriGen Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

S.J.L., D.J.H., W.S.A. and B.T.K. designed and did research, analyzed data and wrote the paper; A.K.V. and D.M. designed and did research and analyzed data; E.A.K., D.F.H., C.A.d.G., C.D.H. and S.E. did research and analyzed data; and T.A.W. and K.J.H. did research.

Corresponding author

Correspondence to Benjamin T Kile.

Ethics declarations

Competing interests

This work was supported by MuriGen Therapeutics, in which D.J.H., W.S.A. and B.T.K. hold equity and for which they consult.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Tables 1–3 (PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loughran, S., Kruse, E., Hacking, D. et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 9, 810–819 (2008). https://doi.org/10.1038/ni.1617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing