Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable signaling mediated by T cell antigen receptor–CD3 ITAMs ensures effective negative selection and prevents autoimmunity

Abstract

The T cell antigen receptor (TCR)-CD3 complex is unique in having ten cytoplasmic immunoreceptor tyrosine-based activation motifs (ITAMs). The physiological importance of this high TCR ITAM number is unclear. Here we generated 25 groups of mice expressing various combinations of wild-type and mutant ITAMs in TCR-CD3 complexes. Mice with fewer than seven wild-type CD3 ITAMs developed a lethal, multiorgan autoimmune disease caused by a breakdown in central rather than peripheral tolerance. Although there was a linear correlation between the number of wild-type CD3 ITAMs and T cell proliferation, cytokine production was unaffected by ITAM number. Thus, high ITAM number provides scalable signaling that can modulate proliferation yet ensure effective negative selection and prevention of autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Profound autoimmunity in CD3-mutant mice.
Figure 2: A specific number of ITAMs is required for each T cell developmental parameter.
Figure 3: Cells from CD3-mutant mice proliferate less but have normal cytokine production.
Figure 4: Normal proportion and function of Treg cells in CD3-mutant mice.
Figure 5: Lower signaling converts negative selection into positive selection and generates IFN-γ-producing autoreactive T cells.

Similar content being viewed by others

References

  1. Daeron, M. Fc receptor biology. Annu. Rev. Immunol. 15, 203–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Weiss, A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73, 209–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Dal Porto, J.M. et al. B cell antigen receptor signaling 101. Mol. Immunol. 41, 599–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hamerman, J.A. & Lanier, L.L. Inhibition of immune responses by ITAM-bearing receptors. Sci. STKE 2006, re1 (2006).

    PubMed  Google Scholar 

  6. Love, P.E. & Shores, E.W. ITAM multiplicity and thymocyte selection: how low can you go? Immunity 12, 591–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Pitcher, L.A. & van Oers, N.S. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol. 24, 554–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Call, M.E. & Wucherpfennig, K.W. The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu. Rev. Immunol. 23, 101–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Szymczak, A. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, B. et al. T lymphocyte development in the absence of CD3ε or CD3γδζε. J. Immunol. 162, 88–94 (1999).

    CAS  PubMed  Google Scholar 

  11. Holst, J. et al. Generation of T cell receptor retrogenic mice. Nat. Protocols 1, 406–417 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Love, P.E., Lee, J. & Shores, E.W. Critical relationship between TCR signaling potential and TCR affinity during thymocyte selection. J. Immunol. 165, 3080–3087 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. van Oers, N.S., Love, P.E., Shores, E.W. & Weiss, A. Regulation of TCR signal transduction in murine thymocytes by multiple TCR ζ-chain signaling motifs. J. Immunol. 160, 163–170 (1998).

    CAS  PubMed  Google Scholar 

  14. Ardouin, L. et al. Crippling of CD3-zeta ITAMs does not impair T cell receptor signaling. Immunity 10, 409–420 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, S.Y., Ardouin, L., Gillet, A., Malissen, M. & Malissen, B. The single positive T cells found in CD3-ζ/η−/− mice overtly react with self-major histocompatibility complex molecules upon restoration of normal surface density of T cell receptor-CD3 complex. J. Exp. Med. 185, 707–715 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson, W.H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von, B.H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat. Immunol. 2, 403–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huseby, E.S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Maloy, K.J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. von Boehmer, H. Mechanisms of suppression by suppressor T cells. Nat. Immunol. 6, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Banham, A.H., Powrie, F.M. & Suri-Payer, E. FOXP3+ regulatory T cells: current controversies and future perspectives. Eur. J. Immunol. 36, 2832–2836 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Shevach, E.M. et al. The lifestyle of naturally occurring CD4+CD25+ Foxp3+ regulatory T cells. Immunol. Rev. 212, 60–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Xystrakis, E., Boswell, S.E. & Hawrylowicz, C.M. T regulatory cells and the control of allergic disease. Expert Opin. Biol. Ther. 6, 121–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Coombes, J.L., Robinson, N.J., Maloy, K.J., Uhlig, H.H. & Powrie, F. Regulatory T cells and intestinal homeostasis. Immunol. Rev. 204, 184–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Zucchelli, S. et al. Defective central tolerance induction in NOD mice: genomics and genetics. Immunity 22, 385–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Holst, J., Vignali, K.M., Burton, A.R. & Vignali, D.A. Rapid analysis of T-cell selection in vivo using T cell-receptor retrogenic mice. Nat. Methods 3, 191–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Valujskikh, A., Lantz, O., Celli, S., Matzinger, P. & Heeger, P.S. Cross-primed CD8+ T cells mediate graft rejection via a distinct effector pathway. Nat. Immunol. 3, 844–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Schonrich, G. et al. Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65, 293–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Yamazaki, T. et al. A shift from negative to positive selection of autoreactive T cells by the reduced level of TCR signal in TCR-transgenic CD3 ζ-deficient mice. J. Immunol. 158, 1634–1640 (1997).

    CAS  PubMed  Google Scholar 

  36. Shores, E.W. et al. T cell development in mice lacking all T cell receptor ζ family members (ζ, η, and FcεRIγ). J. Exp. Med. 187, 1093–1101 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, Q. et al. Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection. J. Exp. Med. 203, 165–175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hasler, P. & Zouali, M. Immune receptor signaling, aging, and autoimmunity. Cell. Immunol. 233, 102–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Nambiar, M.P. et al. Reconstitution of deficient T cell receptor ζ chain restores T cell signaling and augments T cell receptor/CD3-induced interleukin-2 production in patients with systemic lupus erythematosus. Arthritis Rheum. 48, 1948–1955 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi, T. et al. TCR ζ chain lacking exon 7 in two patients with systemic lupus erythematosus. Int. Immunol. 10, 911–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Tsuzaka, K., Takeuchi, T., Onoda, N., Pang, M. & Abe, T. Mutations in T cell receptor ζ chain mRNA of peripheral T cells from systemic lupus erythematosus patients. J. Autoimmun. 11, 381–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Strober, W. & Ehrhardt, R.O. Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice. Cell 75, 203–205 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Pitcher, L.A. et al. The CD3γε/δε signaling module provides normal T cell functions in the absence of the TCR ζ immunoreceptor tyrosine-based activation motifs. Eur. J. Immunol. 35, 3643–3654 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Ho, W.Y., Cooke, M.P., Goodnow, C.C. & Davis, M.M. Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J. Exp. Med. 179, 1539–1549 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Szymczak, A. & Vignali, D.A.A. Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin. Biol. Ther. 5, 627–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Szymczak-Workman, A.L., Vignali, K.M. & Vignali, D.A.A. in Gene Transfer: Delivery and Expression (eds. Friedmann, T. & Rossi, J.) 137–147 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006).

    Google Scholar 

  48. Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120–1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Persons, D.A. et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood 90, 1777–1786 (1997).

    CAS  PubMed  Google Scholar 

  50. Persons, D.A., Mehaffey, M.G., Kaleko, M., Nienhuis, A.W. & Vanin, E.F. An improved method for generating retroviral producer clones for vectors lacking a selectable marker gene. Blood Cells Mol. Dis. 24, 167–182 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Green, M. Davis and J. Ihle for reviewing the manuscript; L. Collison (St. Jude Children's Research Hospital) for mice with inflammatory bowel disease; C. Terhorst (Harvard Medical School) for Cd3eΔP/ΔP mice; N. van Oers (University of Texas Southwestern Medical Center) for CD3ζ-KO Tg1-6M mice; M. Davis for 3A9 TCR–transgenic mice; K. Vignali, Y. Wang, S. Dilioglou, A. Burton and E. Vincent for technical assistance; the Vignali lab for assistance with bone marrow collection; R. Cross, J. Hoffrage, J. Smith and Y. He for flow cytometry; S. Rowe, J. Gatewood and J. Smith for cytokine analysis; L. Zhang of the Cell and Tissue Imaging facility for image acquisition; the staff of the Flow Cytometry and Cell Sorting Shared Resource facility for purification by magnetic-activated cell sorting; and the Hartwell Center for DNA sequencing. Supported by the National Institutes of Health (AI-52199; and U19-DK-6134 to P.J.U.), the St. Jude National Cancer Institute Cancer Center (CA-21765) and the American Lebanese Syrian Associated Charities (D.A.A.V.) the National Heart, Lung and Blood Institute (proteomics contract NOI-HV-28183 to P.J.U.); and the Floren Family Trust (P.J.U.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussions of experimental design, data analysis and/or editing of the manuscript; J.H. did all experiments unless stated otherwise; H.W., K.D.E. and C.J.W. generated mice for the immunofluorescence microscopy and autoantibody analysis, did the Treg cell experiments, chimera-lymphopenia experiments, some of the flow cytometry analysis and the BrdU and lymph node assays; K.L.B. did all the histological analysis and scoring while 'blinded' to sample identity; K.F. assisted in cellular isolation and analysis and managed the breeding colonies; Z.B. and R.S. did the immunofluorescence microscopy, H.S., A.C. and P.J.U. did the autoantibody analysis; N.S.C.v.O. provided the CD3ζ-KO Tg1-6M-transgenic mice and discussions about their use; J.H. and D.A.A.V. wrote the manuscript; and D.A.A.V. conceptualized and directed the project.

Corresponding author

Correspondence to Dario A A Vignali.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Methods, Supplementary Tables 1–3 and Supplementary Figures 1–13 (PDF 2235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst, J., Wang, H., Eder, K. et al. Scalable signaling mediated by T cell antigen receptor–CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol 9, 658–666 (2008). https://doi.org/10.1038/ni.1611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1611

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing