Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes

Abstract

Antigen recognition by T cell antigen receptors (TCRs) is thought to 'unmask' a proline-rich sequence (PRS) present in the CD3ε cytosolic segment, which allows it to trigger T cell activation. Using 'knock-in' mice with deletion of the PRS, we demonstrate here that elimination of the CD3ε PRS had no effect on mature T cell responsiveness. In contrast, in preselection CD4+CD8+ thymocytes, the CD3ε PRS acted together with the adaptor protein SLAP to promote CD3ζ degradation, thereby contributing to downregulation of TCR expression on the cell surface. In addition, analysis of CD4+CD8+ thymocytes of TCR-transgenic mice showed that the CD3ε PRS enhanced TCR sensitivity to weak ligands. Our results identify previously unknown functions for the evolutionarily conserved CD3ε PRS at the CD4+CD8+ developmental stage and suggest a rather limited function in mature T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Higher TCR expression on DP thymocytes from Cd3eΔPRS/ΔPRS mice.
Figure 2: The Cd3eΔPRS mutation abrogates Nck docking.
Figure 3: TCR internalization and recycling in Cd3eΔPRS/ΔPRS DP thymocytes.
Figure 4: The MHC class II–CD4–Lck–SLAP pathway and CD3ε PRS act together to downregulate αβ TCR expression on DP cells.
Figure 5: The CD3ε PRS and SLAP regulate CD3ζ degradation in DP thymocytes.
Figure 6: Impeded positive selection in Cd3eΔPRS/ΔPRS mice expressing the HY transgenic TCR.
Figure 7: The CD3ε PRS enhances the responsiveness of DP thymocytes to weak TCR stimuli.
Figure 8: Tyrosine phosphorylation in thymocytes from wild-type, Cd3eΔPRS/ΔPRS and Sla−/− mice after TCR cross-linking.

Similar content being viewed by others

References

  1. Hogquist, K.A., Baldwin, T.A. & Jameson, S.C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  Google Scholar 

  2. Ericsson, P.O. & Teh, H.S. The protein tyrosine kinase p56lck regulates TCR expression and T cell selection. Int. Immunol. 7, 617–624 (1995).

    Article  CAS  Google Scholar 

  3. Sosinowski, T., Killeen, N. & Weiss, A. The Src-like adaptor protein downregulates the T cell receptor on CD4+CD8+ thymocytes and regulates positive selection. Immunity 15, 457–466 (2001).

    Article  CAS  Google Scholar 

  4. Bonifacino, J.S. et al. Novel post-translational regulation of TCR expression in CD4+CD8+ thymocytes influenced by CD4. Nature 344, 247–251 (1990).

    Article  CAS  Google Scholar 

  5. Nakayama, T. et al. Inhibition of T cell receptor expression and function in immature CD4+CD8+ cells by CD4. Science 249, 1558–1561 (1990).

    Article  CAS  Google Scholar 

  6. Wiest, D.L. et al. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 178, 1701–1712 (1993).

    Article  CAS  Google Scholar 

  7. Cosgrove, D. et al. Mice lacking MHC class II molecules. Cell 66, 1051–1066 (1991).

    Article  CAS  Google Scholar 

  8. Molina, T.J. et al. Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161–164 (1992).

    Article  CAS  Google Scholar 

  9. McCarthy, S.A., Kruisbeek, A.M., Uppenkamp, I.K., Sharrow, S.O. & Singer, A. Engagement of the CD4 molecule influences cell surface expression of the T-cell receptor on thymocytes. Nature 336, 76–79 (1988).

    Article  CAS  Google Scholar 

  10. Kearse, K.P. et al. Developmental regulation of αβ T cell antigen receptor expression results from differential stability of nascent TCRα proteins within the endoplasmic reticulum of immature and mature T cells. EMBO J. 13, 4504–4514 (1994).

    Article  CAS  Google Scholar 

  11. Riberdy, J.M., Mostaghel, E. & Doyle, C. Disruption of the CD4-major histocompatibility complex class II interaction blocks the development of CD4+ T cells in vivo. Proc. Natl. Acad. Sci. USA 95, 4493–4498 (1998).

    Article  CAS  Google Scholar 

  12. Myers, M.D., Dragone, L.L. & Weiss, A. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCRζ for degradation. J. Cell Biol. 170, 285–294 (2005).

    Article  CAS  Google Scholar 

  13. Myers, M.D. et al. Src-like adaptor protein regulates TCR expression on thymocytes by linking the ubiquitin ligase c-Cbl to the TCR complex. Nat. Immunol. 7, 57–66 (2006).

    Article  CAS  Google Scholar 

  14. Sosinowski, T., Pandey, A., Dixit, V.M. & Weiss, A. Src-like adaptor protein (SLAP) is a negative regulator of T cell receptor signaling. J. Exp. Med. 191, 463–474 (2000).

    Article  CAS  Google Scholar 

  15. Naramura, M., Kole, H.K., Hu, R.J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl. Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  Google Scholar 

  16. Roehm, N. et al. The major histocompatibility complex-restricted antigen receptor on T cells: distribution on thymus and peripheral T cells. Cell 38, 577–584 (1984).

    Article  CAS  Google Scholar 

  17. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R.N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).

    Article  CAS  Google Scholar 

  18. Davey, G.M. et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).

    Article  CAS  Google Scholar 

  19. Eck, S.C. et al. Developmental alterations in thymocyte sensitivity are actively regulated by MHC class II expression in the thymic medulla. J. Immunol. 176, 2229–2237 (2006).

    Article  CAS  Google Scholar 

  20. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    Article  CAS  Google Scholar 

  21. Alarcon, B., Gil, D., Delgado, P. & Schamel, W.W. Initiation of TCR signaling: regulation within CD3 dimers. Immunol. Rev. 191, 38–46 (2003).

    Article  CAS  Google Scholar 

  22. Schamel, W.W., Risueno, R.M., Minguet, S., Ortiz, A.R. & Alarcon, B. A conformation- and avidity-based proofreading mechanism for the TCR-CD3 complex. Trends Immunol. 27, 176–182 (2006).

    Article  CAS  Google Scholar 

  23. Gil, D., Schamel, W.W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  Google Scholar 

  24. Szymczak, A.L. et al. The CD3ε proline-rich sequence, and its interaction with Nck, is not required for T cell development and function. J. Immunol. 175, 270–275 (2005).

    Article  CAS  Google Scholar 

  25. Kesti, T. et al. Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3ε. J. Immunol. 179, 878–885 (2007).

    Article  CAS  Google Scholar 

  26. Risueno, R.M., Gil, D., Fernandez, E., Sanchez-Madrid, F. & Alarcon, B. Ligand-induced conformational change in the T-cell receptor associated with productive immune synapses. Blood 106, 601–608 (2005).

    Article  CAS  Google Scholar 

  27. Risueno, R.M., van Santen, H.M. & Alarcon, B. A conformational change senses the strength of T cell receptor-ligand interaction during thymic selection. Proc. Natl. Acad. Sci. USA 103, 9625–9630 (2006).

    Article  CAS  Google Scholar 

  28. Merkenschlager, M. et al. How many thymocytes audition for selection? J. Exp. Med. 186, 1149–1158 (1997).

    Article  CAS  Google Scholar 

  29. Watanabe, Y. et al. A murine thymic stromal cell line which may support the differentiation of CD48 thymocytes into CD4+8 αβ T cell receptor positive T cells. Cell. Immunol. 142, 385–397 (1992).

    Article  CAS  Google Scholar 

  30. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  Google Scholar 

  31. Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J.P. Gamma chain required for naive CD4+ T cell survival but not for antigen proliferation. Nat. Immunol. 1, 54–58 (2000).

    Article  CAS  Google Scholar 

  32. Takahama, Y., Shores, E.W. & Singer, A. Negative selection of precursor thymocytes before their differentiation into CD4+CD8+ cells. Science 258, 653–656 (1992).

    Article  CAS  Google Scholar 

  33. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    Article  CAS  Google Scholar 

  34. Gil, D., Schrum, A.G., Alarcon, B. & Palmer, E. T cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J. Exp. Med. 201, 517–522 (2005).

    Article  CAS  Google Scholar 

  35. Minguet, S., Swamy, M., Alarcon, B., Luescher, I.F. & Schamel, W.W. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

    Article  CAS  Google Scholar 

  36. Malissen, M. et al. T cell development in mice lacking the CD3-ζ/η gene. EMBO J. 12, 4347–4355 (1993).

    Article  CAS  Google Scholar 

  37. Malissen, B. An evolutionary and structural perspective on T cell antigen receptor function. Immunol. Rev. 191, 7–27 (2003).

    Article  CAS  Google Scholar 

  38. van Oers, N.S., Killeen, N. & Weiss, A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J. Exp. Med. 183, 1053–1062 (1996).

    Article  CAS  Google Scholar 

  39. Bladt, F. et al. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network. Mol. Cell. Biol. 23, 4586–4597 (2003).

    Article  CAS  Google Scholar 

  40. Norment, A.M., Forbush, K.A., Nguyen, N., Malissen, M. & Perlmutter, R.M. Replacement of pre-T cell receptor signaling functions by the CD4 coreceptor. J. Exp. Med. 185, 121–130 (1997).

    Article  CAS  Google Scholar 

  41. Dave, V.P., Allman, D., Wiest, D.L. & Kappes, D.J. Limiting TCR expression leads to quantitative but not qualitative changes in thymic selection. J. Immunol. 162, 5764–5774 (1999).

    CAS  PubMed  Google Scholar 

  42. Malissen, M. et al. Regulation of TCR α and β gene allelic exclusion during T-cell development. Immunol. Today 13, 315–322 (1992).

    Article  CAS  Google Scholar 

  43. Davodeau, F. et al. The tight interallelic positional coincidence that distinguishes T-cell receptor Jα usage does not result from homologous chromosomal pairing during VαJα rearrangement. EMBO J. 20, 4717–4729 (2001).

    Article  CAS  Google Scholar 

  44. Kadlecek, T.A. et al. Differential requirements for ZAP-70 in TCR signaling and T cell development. J. Immunol. 161, 4688–4694 (1998).

    CAS  PubMed  Google Scholar 

  45. Martin, B., Becourt, C., Bienvenu, B. & Lucas, B. Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood 108, 270–277 (2006).

    Article  CAS  Google Scholar 

  46. Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3-ε gene. EMBO J. 14, 4641–4653 (1995).

    Article  CAS  Google Scholar 

  47. Laurent, J., Bosco, N., Marche, P.N. & Ceredig, R. New insights into the proliferation and differentiation of early mouse thymocytes. Int. Immunol. 16, 1069–1080 (2004).

    Article  CAS  Google Scholar 

  48. Wang, Y. et al. Single and combined deletions of the NTAL/LAB and LAT adaptors minimally affect B-cell development and function. Mol. Cell. Biol. 25, 4455–4465 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Boukarabila, C. Boyer, Y. Wang, S. Yamasaki, A. Tafuri, I. Prinz, H.T. He and L. Poulin for discussions; P. Grenot, M. Barad, N. Brun, M. Richelme, P. Perrin, F. Danjan and A. Gillet for advice and technical assistance; D. Gil (Mayo Clinic Rochester) for GST and GST–Nck-SH3.1 constructs; S. Yamasaki (Riken Research Center for Allergy and Immunology) for Tst4-DL1 cells; and A.M. Schmitt-Verhulst (Centre d'Immunologie de Marseille-Luminy) for biotin-conjugated anti-H-2Kb. Supported by the Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, European Communities (MUGEN Network of Excellence), Agence Nationale pour la Recherche (Plate-forme Technologique du Vivant IBISA-MNG), Association pour la Recherche sur le Cancer, Fondation pour la Recherche Médicale, Ecole Normale Supérieure (M.Mi.) and European Molecular Biology Organization (R.R.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussions of experimental design and data analysis; M.Mi. did all experimental studies unless otherwise indicated; A.S. provided technical assistance; C.G. and R.R. helped with biochemistry and calcium imaging; E.A. helped with the 'knock-in' strategy; A.W. provided suggestions and mice deficient in SLAP and Zap70; M.Ma. and B.M. directed the study; and M.Mi. and B.M. wrote the manuscript.

Corresponding author

Correspondence to Bernard Malissen.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–13 and Supplementary Tables 1–2 (PDF 3755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingueneau, M., Sansoni, A., Grégoire, C. et al. The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nat Immunol 9, 522–532 (2008). https://doi.org/10.1038/ni.1608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing