Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2

Abstract

Members of the IRAK family of kinases mediate Toll-like receptor (TLR) signaling. Here we show that IRAK2 was essential for sustaining TLR-induced expression of genes encoding cytokines and activation of the transcription factor NF-κB, despite the fact that IRAK2 was dispensable for activation of the initial signaling cascades. IRAK2 was activated 'downstream' of IRAK4, like IRAK1, and TLR-induced cytokine production was abrogated in the absence of both IRAK1 and IRAK2. Whereas the kinase activity of IRAK1 decreased within 1 h of TLR2 stimulation, coincident with IRAK1 degradation, the kinase activity of IRAK2 was sustained and peaked at 8 h after stimulation. Thus, IRAK2 is critical in late-phase TLR responses, and IRAK1 and IRAK2 are essential for the initial responses to TLR stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Critical function for IRAK2 in TLR-mediated responses in vivo.
Figure 2: Impaired MALP-2-induced gene expression in Irak2–/– cells.
Figure 3: Activation of NF-κB and MAP kinases in Irak2–/– macrophages in response to MALP-2.
Figure 4: Requirement for IRAK2 kinase activity in the response to stimulation with MALP-2.
Figure 5: Sequential activation of IRAK1 and IRAK2 kinase activity after stimulation with MALP-2.
Figure 6: Redundant functions of IRAK1 and IRAK2 in TLR responses.
Figure 7: Double deficiency in IRAK1 and IRAK2 causes impaired signaling and is similar to IRAK4 deficiency.
Figure 8: Expression of MALP-2-inducible genes in IRAK1- and IRAK2-deficient macrophages.

Similar content being viewed by others

References

  1. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Fitzgerald, K.A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Horng, T., Barton, G.M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Horng, T., Barton, G.M., Flavell, R.A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nat. Immunol. 4, 161–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kagan, J.C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9, 361–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fitzgerald, K.A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, N. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki, N. et al. IL-1R-associated kinase 4 is required for lipopolysaccharide-induced activation of APC. J. Immunol. 171, 6065–6071 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Honda, K. et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 101, 15416–15421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koziczak-Holbro, M. et al. IRAK-4 kinase activity is required for interleukin-1 (IL-1) receptor- and toll-like receptor 7-mediated signaling and gene expression. J. Biol. Chem. 282, 13552–13560 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, T.W. et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J. Exp. Med. 204, 1025–1036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawagoe, T. et al. Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J. Exp. Med. 204, 1013–1024 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Medvedev, A.E. et al. Cutting edge: expression of IL-1 receptor-associated kinase-4 (IRAK-4) proteins with mutations identified in a patient with recurrent bacterial infections alters normal IRAK-4 interaction with components of the IL-1 receptor complex. J. Immunol. 174, 6587–6591 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, K. et al. Human TLR-7-, -8-, and -9-mediated induction of IFN-α/β and -λ is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23, 465–478 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ku, C.L. et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J. Exp. Med. 204, 2407–2422 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Croston, G.E., Cao, Z. & Goeddel, D.V. NF-κB activation by interleukin-1 (IL-1) requires an IL-1 receptor-associated protein kinase activity. J. Biol. Chem. 270, 16514–16517 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Kanakaraj, P. et al. Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J. Exp. Med. 187, 2073–2079 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomas, J.A. et al. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163, 978–984 (1999).

    CAS  PubMed  Google Scholar 

  31. Uematsu, S. et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915–923 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muzio, M., Ni, J., Feng, P. & Dixit, V.M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612–1615 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hardy, M.P. & O'Neill, L.A. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J. Biol. Chem. 279, 27699–27708 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Keating, S.E., Maloney, G.M., Moran, E.M. & Bowie, A.G. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFκB via activation of TRAF6 ubiquitination. J. Biol. Chem. 282, 33435–33443 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Wesche, H. et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J. Biol. Chem. 274, 19403–19410 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Yamin, T.T. & Miller, D.K. The interleukin-1 receptor-associated kinase is degraded by proteasomes following its phosphorylation. J. Biol. Chem. 272, 21540–21547 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Li, X. et al. Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol. Cell. Biol. 19, 4643–4652 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swantek, J.L., Tsen, M.F., Cobb, M.H. & Thomas, J.A. IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. J. Immunol. 164, 4301–4306 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Li, S., Strelow, A., Fontana, E.J. & Wesche, H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. USA 99, 5567–5572 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knop, J. & Martin, M.U. Effects of IL-1 receptor-associated kinase (IRAK) expression on IL-1 signaling are independent of its kinase activity. FEBS Lett. 448, 81–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Maschera, B., Ray, K., Burns, K. & Volpe, F. Overexpression of an enzymically inactive interleukin-1-receptor-associated kinase activates nuclear factor-κB. Biochem. J. 339, 227–231 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, X., Commane, M., Jiang, Z. & Stark, G.R. IL-1-induced NFκB and c-Jun N-terminal kinase (JNK) activation diverge at IL-1 receptor-associated kinase (IRAK). Proc. Natl. Acad. Sci. USA 98, 4461–4465 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jensen, L.E. & Whitehead, A.S. IRAK1b, a novel alternative splice variant of interleukin-1 receptor-associated kinase (IRAK), mediates interleukin-1 signaling and has prolonged stability. J. Biol. Chem. 276, 29037–29044 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Rechsteiner, M. & Rogers, S.W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Takeuchi, O. et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164, 554–557 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Hemmi, H. et al. Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sato, S. et al. A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and -independent pathways. Int. Immunol. 14, 783–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Barton, G.M., Kagan, J.C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7, 49–56 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.A. Thomas (University of Texas Southern Medical Center) for Irak1–/– mice; all our colleagues in our laboratory; M. Hashimoto for secretarial assistance; and Y. Fujiwara, M. Shiokawa, A. Shibano and N. Kitagaki for technical assistance. Supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Ministry of Health, Labour and Welfare of Japan; the 21st Century Center of Excellence Program of Japan; and the National Institutes of Health (AI070167).

Author information

Authors and Affiliations

Authors

Contributions

T. Kawagoe, O.T. and S.A. designed the research and analyzed data; T. Kawagoe did most of the experiments; S.S., K. Matsushita., H.K., K. Matsui., Y.K., T.S. and T.K. provided advice; and T. Kawagoe, O.T. and S.A. prepared the manuscript.

Corresponding author

Correspondence to Shizuo Akira.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3925 kb)

Supplementary Table 1

Gene lists and expression profiles of MALP-2-inducible genes in wild-type, Irak2–/– and Irak1–/YIrak2–/– macrophages (XLS 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawagoe, T., Sato, S., Matsushita, K. et al. Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nat Immunol 9, 684–691 (2008). https://doi.org/10.1038/ni.1606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing