Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Holocene evolution of the Indonesian throughflow and the western Pacific warm pool

Abstract

High sea surface temperatures in the western Pacific warm pool fuel atmospheric convection and influence tropical climate. This region also hosts the Indonesian throughflow, the network of currents through which surface and thermocline waters are transported from the western equatorial Pacific Ocean into the Indian Ocean. Here we show, using records of the δ18O and Mg/Ca of planktonic foraminifera from eight sediment cores, that from about 10,000 to 7,000 years ago, sea surface temperatures in the western sector of the western Pacific warm pool were about 0.5 °C higher than during pre-industrial times. We also find that about 9,500 years ago, when the South China and Indonesian seas were connected by rising sea level, surface waters in the Makassar Strait became relatively fresher. We suggest that the permanent reduction of surface salinity initiated the enhanced flow at lower, thermocline depths seen in the modern Indonesian throughflow. However, the uniformly warm sea surface temperatures found upstream and downstream of the Indonesian throughflow indicate that the early Holocene warmth in this region was not directly related to reduced heat transport by the throughflow that may have resulted from surface freshening of the Makassar Strait. Instead, we propose that the elevated temperatures were the result of a westward shift or expansion of the boundaries of the western Pacific warm pool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sea surface temperature and salinity in the WPWP and Makassar Strait.
Figure 2: Planktonic foraminifera Mg/Ca records of mixed-layer temperatures in the WPWP.
Figure 3: Planktonic foraminifera δ18O and δ18Osw in the WPWP and Makassar Strait.

Similar content being viewed by others

References

  1. Vranes, K., Gordon, Al. L. & Ffield, A. The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep Sea Res. (II) 49, 1391–1410 (2002).

    Article  Google Scholar 

  2. Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046 (1986).

    Article  Google Scholar 

  3. Chen, G., Fang, C. Y., Zhang, C. Y. & Chen, Y. Observing the coupling effect between warm pool and rain pool in the Pacific Ocean. Remote Sensing Environ. 91, 153–159 (2004).

    Article  Google Scholar 

  4. Huang, B. & Mehta, V. M. The response of the Indo-Pacific Warm Pool to interannual variations in net atmospheric freshwater. J. Geophys. Res. 109, C06022 (2004).

    Google Scholar 

  5. Bray, N. A., Hautala, S., Chong, J. & Pariwono, J. Large-scale sea level, thermocline, and wind variations in the Indonesian throughflow region. J. Geophys. Res. 101, 12239–12254 (1996).

    Article  Google Scholar 

  6. Gordon, A. L., Susanto, R. D. & Vranes, K. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425, 824–828 (2003).

    Article  Google Scholar 

  7. Fieux, M. et al. Measurements within the Pacific-Indian oceans throughflow region. Deep Sea Res. 41, 1091–1130 (1994).

    Article  Google Scholar 

  8. Ffield, A., Vranes, K., Gordon, A. L. & Susanto, R. D. Temperature variability within the Makassar Strait. Geophys. Res. Lett. 27, 237–240 (2000).

    Article  Google Scholar 

  9. Susanto, R.D. & Gordon, A. L. Velocity and transport of the Makassar Strait throughflow. J. Geophys. Res. 110, C01005 (2005).

    Article  Google Scholar 

  10. Tozuka, T., Qu, T. & Yamagata, T. Dramatic impact of the South China Sea on the Indonesian Throughflow. Geophys. Res. Lett. 34, L12612 (2007).

    Article  Google Scholar 

  11. Anand, P., Elderfield, H. & Conte, M.H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time-series. Paleoceanography 18, 1050 (2003).

    Article  Google Scholar 

  12. Oppo, D. W., Rosenthal, Y. & Linsley, B. K. 2000-year-long temperature and hydrology reconstructions from the Indo-Pacific Warm Pool. Nature 460, 1113–1116 (2009).

    Article  Google Scholar 

  13. Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719–1724 (2000).

    Article  Google Scholar 

  14. Rosenthal, Y., Oppo, D. W. & Linsley, B. K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophys. Res. Lett. 30, 1428 (2003).

    Article  Google Scholar 

  15. Stott, L. et al. Decline of sea surface temperature and salinity in the western tropical Pacific Ocean during the Holocene Epoch. Nature 431, 56–59 (2004).

    Article  Google Scholar 

  16. Newton, A., Thunell, R. & Stott, L. Climate and hydrologic variability in the Indo-Pacific Warm Pool during the last Millennium. Geophys. Res. Lett. 33, L19710 (2006).

    Article  Google Scholar 

  17. Visser, K., Thunell, R. C. & Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421, 152–155 (2003).

    Article  Google Scholar 

  18. Renssen, H. et al. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geosci. 2, 411–414 (2009).

    Article  Google Scholar 

  19. Vinther, B. M. et al. Holocene thinning of the Greenland Ice Sheet. Nature 461, 385–388 (2009).

    Article  Google Scholar 

  20. Wang, Y. et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic Climate. Science 308, 854–857 (2005).

    Article  Google Scholar 

  21. Xu, J., Holbourn, A., Kuhnt, W., Jian, Z. & Kawamura, H. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II. Earth Planet. Sci. Lett. 273, 152–162 (2008).

    Article  Google Scholar 

  22. Kisakurek, B., Eisenhaur, A., Bohm, F., Garbe-Schonberg, D. & Erez, J. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminferan, Globigerinoids ruber (white). Earth Planet. Sci. Lett. 273, 260–269 (2008).

    Article  Google Scholar 

  23. Mathien-Blard, E. & Bassinot, F. Salinity bias on the foraminifera Mg/Ca thermometry: Correction procedure and implications for past ocean hydrographic reconstructions. Geochem. Geophys. Geosyst. 12, Q12011 (2009).

    Google Scholar 

  24. Bard, E. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).

    Article  Google Scholar 

  25. Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: A late-glacial sea level record. Science 288, 1033–1035 (2000).

    Article  Google Scholar 

  26. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    Article  Google Scholar 

  27. Sathiamurthy, E & Voris, H.K. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Nat. Hist. J. Chulalongkorn Univ. (suppl. 2), 1–44 (2006).

    Google Scholar 

  28. Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).

    Article  Google Scholar 

  29. LaGrande, A.N. & Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).

    Article  Google Scholar 

  30. Griffiths, M.L. et al. Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geosci. 2, 636–639 (2009).

    Article  Google Scholar 

  31. Lukas, R. & Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. 96, 3343–3357 (1991).

    Article  Google Scholar 

  32. Vialard, J. R. M. & Delecluse, P. An OGCM Study for the TOGA Decade. Part I: Role of salinity in the physics of the Western Pacific fresh pool. J. Phys. Ocean 28, 1071–1088 (1998).

    Article  Google Scholar 

  33. Rodbell, D. T. et al. A 15,000 year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, 516–520 (1999).

    Article  Google Scholar 

  34. Moy, C.M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial time-scales during the Holocene epoch. Nature 420, 162–165 (2002).

    Article  Google Scholar 

  35. Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M. & Steinitz-Kannan, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27, 1166–1180 (2008).

    Article  Google Scholar 

  36. Koutavas, A., deMenocal, P. B., Olive, G. C. & Lynch-Stieglitz, J. Mid-Holocene El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34, 993–996 (2006).

    Article  Google Scholar 

  37. Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article  Google Scholar 

  38. DiNezio, P. N. et al. Climate response of the equatorial Pacific to global warming. J. Clim. 22, 4873–4892 (2009).

    Article  Google Scholar 

  39. Liu, Z., Bradly, E. & Lynch-Stieglitz, J. Global ocean response to orbital forcing in the Holocene. Paleoceanography 18, 1041 (2003).

    Article  Google Scholar 

  40. Lorenz, S. J., Kim, J-H., Schneider, R. R. & Lohmann, G. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling. Paleoceanography 21, PA1002 (2006).

    Article  Google Scholar 

  41. Jansen, E. et al. in IPCC Climate Change 2007; The Physical Science Basis. 4th Assessment Report IPCC (eds Solomon, S. et al.) 433–498 (Cambridge Univ. Press, 2007).

    Google Scholar 

  42. Wajsowicz, R. C. Air–sea interaction over the Indian Ocean due to variations in the Indonesian throughflow. Clim. Dyn. 18, 437–453 (2002).

    Article  Google Scholar 

  43. Karas, C. et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nature Geosci. 2, 434–438 (2009).

    Article  Google Scholar 

  44. Fairbanks, R.G. et al. Marine radiocarbon calibration curve spanning 0 to 50,000 years B.P. based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev. 24, 1781–1796 (2005).

    Article  Google Scholar 

  45. Rosenthal, Y., Field, F. & Sherrell, R. M. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 71, 3248–3253 (1999).

    Article  Google Scholar 

  46. Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P. & Garcia, H. E. in World Ocean Atlas 2005, Temperature Vol. 1 (ed. Levitus, S.) 182 (NOAA Atlas NESDIS, Vol. 61, US Government Printing Office, 2006).

    Google Scholar 

  47. Conkright, M. E. et al. World Ocean Database 1998 Documentation and Quality Control (National Oceanographic Data Center, Silver Spring, 1998).

    Google Scholar 

  48. Fairbanks, R. G. A 17,000 year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  49. Levi, C. et al. Low-latitude hydrological cycle and rapid climate changes during the last deglaciation. Geochem. Geophys. Geosyst. 8, Q05N12 (2007).

    Article  Google Scholar 

  50. Steinke, S. et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: Toward resolving seasonality. Quat. Sci. Rev. 27, 688–700 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Y. S. Djajadihardja, F. Syamsudin, the captain and crew of our 2003 R/V Baruna Jaya VIII cruise, the Indonesian Agency for Assessment and Application of Technology (BPPT) and the Center of Research and Development for Oceanography (LIPI) of Indonesia for their support of this project. This research was supported by the US NSF. We thank S. Howe, S. Langton, L. Zou, D. Ostermann, K. Rose, S. Pike and M. Chong for technical assistance, A. Gordon for helpful discussions and the NOSAMS facility at WHOI.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to this work including project planning, field and analytical work and data interpretation.

Corresponding author

Correspondence to Braddock K. Linsley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linsley, B., Rosenthal, Y. & Oppo, D. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool. Nature Geosci 3, 578–583 (2010). https://doi.org/10.1038/ngeo920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing