Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduction of forest soil respiration in response to nitrogen deposition

Abstract

The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. As a consequence, forests in industrialized regions have experienced greater rates of nitrogen deposition in recent decades. This unintended fertilization has stimulated forest growth, but has also affected soil microbial activity, and thus the recycling of soil carbon and nutrients. A meta-analysis suggests that nitrogen deposition impedes organic matter decomposition, and thus stimulates carbon sequestration, in temperate forest soils where nitrogen is not limiting microbial growth. The concomitant reduction in soil carbon emissions is substantial, and equivalent in magnitude to the amount of carbon taken up by trees owing to nitrogen fertilization. As atmospheric nitrogen levels continue to rise, increased nitrogen deposition could spread to older, more weathered soils, as found in the tropics; however, soil carbon cycling in tropical forests cannot yet be assessed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of experimental nitrogen addition on various forest carbon pools and fluxes as calculated by meta-analysis.
Figure 2: Relative effect of nitrogen addition on heterotrophic respiration and soil carbon dioxide efflux.
Figure 3: Observed annual heterotrophic respiration rates and soil carbon dioxide efflux as a function of annual biomass production (NPP) in forests exposed to elevated or background nitrogen deposition.

References

  1. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geosci. 2, 659–662 (2009).

    Google Scholar 

  2. Denman, K. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.), 499–587 (Cambridge Univ. Press, 2007).

    Google Scholar 

  3. Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    Google Scholar 

  4. Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Glob. Biogeochem. Cycles 20, GB4003 (2006).

    Google Scholar 

  5. Lamarque, J. F. et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. J. Geophys. Res. 110, D19303 (2005).

    Google Scholar 

  6. Aber, J. D., Nadelhoffer, K. J., Steudler, P. & Melillo, J. M. Nitrogen saturation in northern forest ecosystems. Bioscience 39, 378–386 (1989).

    Google Scholar 

  7. Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7, 737–750 (1997).

    Google Scholar 

  8. Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K. & Stevens, C. J. Nitrogen deposition causes widespread loss of species richness in British habitats. Glob. Change Biol. 16, 671–679 (2010).

    Google Scholar 

  9. de Vries, W., van der Salm, C., Reinds, G. J. & Erisman, J. W. Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. Environ. Pollut. 148, 501–513 (2007).

    Google Scholar 

  10. Dise, N. B., Rothwell, J. J., Gauci, V., van der Salm, C., & de Vries, W. Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases. Sci. Total Environ. 407, 1798–1808 (2009).

    Google Scholar 

  11. Högberg, P., Fan, H. B., Quist, M., Binkley, D. & Tamm, C. O. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Glob. Change Biol. 12, 489–499 (2006).

    Google Scholar 

  12. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nature Geosci. 1, 430–437 (2008).

    Google Scholar 

  13. Ciais, P. et al. Carbon accumulation in European forests. Nature Geosci. 1, 425–429 (2008).

    Google Scholar 

  14. Pregitzer, K. S., Burton, A. J., Zak, D. R. & Talhelm, A. F. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Glob. Change Biol. 14, 142–153 (2008).

    Google Scholar 

  15. Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geosci. 3, 13–17 (2010).

    Google Scholar 

  16. Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 848–850 (2007).

    Google Scholar 

  17. de Vries, W. et al. Ecologically implausible carbon response? Nature 451, E1–E3 (2008).

    Google Scholar 

  18. Sutton, M. A. et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob. Change Biol. 14, 2057–2063 (2008).

    Google Scholar 

  19. Janssens, I. A. & Luyssaert, S. Nitrogen's carbon bonus. Nature Geosci. 2, 318–319 (2009).

    Google Scholar 

  20. Elvir, J. A., Wiersma, G. B., White, A. S. & Fernandez, I. J. Effects of chronic ammonium sulfate treatment on basal area increment in red spruce and sugar maple at the Bear Brook watershed in Maine. Can. J. Forest Res. 33, 862–869 (2003).

    Google Scholar 

  21. Olsson, P., Linder, S., Giesler, R. & Högberg, P. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob. Change Biol. 11, 1745–1753 (2005).

    Google Scholar 

  22. Hyvönen, R. et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463–480 (2007).

    Google Scholar 

  23. Fog, K. The effect of added nitrogen on the rate of decomposition of organic-matter. Biol. Rev. 63, 433–462 (1988).

    Google Scholar 

  24. Berg, B. & Matzner, E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ. Rev. 5, 1–25 (1997).

    Google Scholar 

  25. Melillo, J. M., Aber, J. D. & Muratore, J. F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621–626 (1982).

    Google Scholar 

  26. Aber, J. D. & Melillo, J. M. Litter decomposition — measuring relative contributions of organic-matter and nitrogen to forest soils. Can. J. Bot. 58, 416–421 (1980).

    Google Scholar 

  27. Swift, M. J., Heal, O. W. & Anderson, J. M. (eds) Decomposition in Terrestrial Ecosystems (Blackwell Scientific, 1979).

    Google Scholar 

  28. McClaugherty, C. & Berg, B. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30, 101–112 (1987).

    Google Scholar 

  29. Knorr, M., Frey, S. D. & Curtis, P. S. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 86, 3252–3257 (2005).

    Google Scholar 

  30. Rosenberg, M. S., Adams, D. C. & Gurevitch, J. Metawin: Statistical Software for Meta-Analysis (Sinauer Associates Inc., 2000).

    Google Scholar 

  31. Hanson, P. J., Edwards, N. T., Garten, C. T. & Andrews, J. A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115–146 (2000).

    Google Scholar 

  32. Subke, J. A., Inglima, I. & Cotrufo, M. F. Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. Glob. Change Biol. 12, 921–943 (2006).

    Google Scholar 

  33. Kutsch, W., Bahn, M. & Heinemeyer, A. (eds) Soil Carbon Dynamics: An Integrated Methodology (Cambridge Univ. Press, 2009).

    Google Scholar 

  34. Ekblad, A. & Högberg, P. Natural abundance of C-13 in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127, 305–308 (2001).

    Google Scholar 

  35. Sampson, D. A., Janssens, I. A., Yuste, J. C. & Ceulemans, R. Basal rates of soil respiration are correlated with photosynthesis in a mixed temperate forest. Glob. Change Biol. 13, 2008–2017 (2007).

    Google Scholar 

  36. Högberg, P. et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792 (2001).

    Google Scholar 

  37. Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).

    Google Scholar 

  38. Cheng, W. & Johnson, D. W. Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202, 167–174 (1998).

    Google Scholar 

  39. Kuzyakov, Y. Review: Factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci. 165, 382–396 (2002).

    Google Scholar 

  40. Martikainen, P. J., Aarnio, T., Taavitsainen, V. M., Paivinen, L. & Salonen, K. Mineralization of carbon and nitrogen in soil samples taken from 3 fertilized pine stands — long-term effects. Plant Soil 114, 99–106 (1989).

    Google Scholar 

  41. Ågren, G. I., Bosatta, E. & Magill, A. H. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128, 94–98 (2001).

    Google Scholar 

  42. Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).

    Google Scholar 

  43. Butnor, J. R., Johnsen, K. H., Oren, R. & Katul, G. G. Reduction of forest floorrespiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands. Glob. Change Biol. 9, 849–861 (2003).

    Google Scholar 

  44. Ceulemans, R. & Mousseau, M. Tansley review no-71 — Effects of elevated atmospheric CO2 on woody-plants. New Phytol. 127, 425–446 (1994).

    Google Scholar 

  45. de Vries, W. et al. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecol. Manag. 258, 1814–1823 (2009).

    Google Scholar 

  46. Hyvönen, R. et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89, 121–137 (2008).

    Google Scholar 

  47. Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

    Google Scholar 

  48. Litton, C. M., Raich, J. W. & Ryan, M. G. Carbon allocation in forest ecosystems. Glob. Change Biol. 13, 2089–2109 (2007).

    Google Scholar 

  49. Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).

    Google Scholar 

  50. Högberg, M. N., Baath, E., Nordgren, A., Arnebrant, K. & Högberg, P. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs — a hypothesis based on field observations in boreal forest. New Phytol. 160, 225–238 (2003).

    Google Scholar 

  51. Ruhling, A. & Tyler, G. Effects of simulated nitrogen deposition to the forest floor on the macrofungal flora of a beech forest. Ambio 20, 261–263 (1991).

    Google Scholar 

  52. Tietema, A. Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. Forest Ecol. Manag. 101, 29–36 (1998).

    Google Scholar 

  53. Egerton-Warburton, L. M. & Allen, E. B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol. Appl. 10, 484–496 (2000).

    Google Scholar 

  54. Johnson, N. C. Can fertilization of soil select less mutualistic mycorrhizae. Ecol. Appl. 3, 749–757 (1993).

    Google Scholar 

  55. van Diepen, L. T. A., Lilleskov, E. A., Pregitzer, K. S. & Miller, R. M. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytol. 176, 175–183 (2007).

    Google Scholar 

  56. Phillips, R. P. & Fahey, T. J. Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol. 176, 655–664 (2007).

    Google Scholar 

  57. Gadgil, R. L. & Gadgil, P. D. Mycorrhiza and litter decomposition. Nature 233, 133 (1971).

    Google Scholar 

  58. Högberg, M. N. & Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol. 154, 791–795 (2002).

    Google Scholar 

  59. van Groenigen, K. J. et al. Element interactions limit soil carbon storage. Proc. Natl Acad. Sci. USA 103, 6571–6574 (2006).

    Google Scholar 

  60. Hoosbeek, M. R. et al. More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE): Cause of increased priming effect? Glob. Biogeochem. Cycles 18, GB1040 (2004).

    Google Scholar 

  61. Wu, J., Brookes, P. C. & Jenkinson, D. S. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biol. Biochem. 25, 1435–1441 (1993).

    Google Scholar 

  62. Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    Google Scholar 

  63. Fontaine, S., Bardoux, G., Abbadie, L. & Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 7, 314–320 (2004).

    Google Scholar 

  64. Subke, J. A. et al. Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139, 551–559 (2004).

    Google Scholar 

  65. Merckx, R., Dijkstra, A., Denhartog, A. & Vanveen, J. A. Production of root-derived material and associated microbial-growth in soil at different nutrient levels. Biol. Fert. Soils 5, 126–132 (1987).

    Google Scholar 

  66. Lekkerkerk, L., Lundkvist, H., Ågren, G. I., Ekbohm, G. & Bosatta, E. Decomposition of heterogeneous substrates — an experimental investigation of a hypothesis on substrate and microbial properties. Soil Biol. Biochem. 22, 161–167 (1990).

    Google Scholar 

  67. Liljeroth, E., Vanveen, J. A. & Miller, H. J. Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil-nitrogen concentrations. Soil Biol. Biochem. 22, 1015–1021 (1990).

    Google Scholar 

  68. Mangenot, F. & Reymond, G. Populations microbiennes des bois. V. Influences de quelques sources de carbone et d'azote sur la décomposition d'une sciure. Rev. Gen. Bot. 70, 107–129 (1963).

    Google Scholar 

  69. Compton, J. E., Watrud, L. S., Porteous, L. A. & DeGrood, S. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecol. Manag. 196, 143–158 (2004).

    Google Scholar 

  70. Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol. Manag. 196, 159–171 (2004).

    Google Scholar 

  71. Feng, X. J., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geosci. 1, 836–839 (2008).

    Google Scholar 

  72. Sinsabaugh, R. L., Gallo, M. E., Lauber, C., Waldrop, M. P. & Zak, D. R. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75, 201–215 (2005).

    Google Scholar 

  73. Keeler, B. L., Hobbie, S. E. & Kellogg, L. E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: Implications for litter and soil organic matter decomposition. Ecosystems 12, 1–15 (2009).

    Google Scholar 

  74. Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A. & Parkhurst, D. F. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81, 2359–2365 (2000).

    Google Scholar 

  75. Sjoberg, G., Nilsson, S. I., Persson, T. & Karlsson, P. Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biol. Biochem. 36, 1761–1768 (2004).

    Google Scholar 

  76. DeForest, J. L., Zak, D. R., Pregitzer, K. S. & Burton, A. J. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biol. Biochem. 36, 965–971 (2004).

    Google Scholar 

  77. Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).

    Google Scholar 

  78. Keyser, P., Kirk, T. K. & Zeikus, J. G. Ligninolytic enzyme-system of phanerochaete-chrysosporium — synthesized in absence of lignin in response to nitrogen starvation. J. Bacteriol. 135, 790–797 (1978).

    Google Scholar 

  79. Tien, M. & Myer, S. B. Selection and characterization of mutants of phanerochaete-chrysosporium exhibiting ligninolytic activity under nutrient-rich conditions. Appl. Environ. Microbiol. 56, 2540–2544 (1990).

    Google Scholar 

  80. Waldrop, M. P. & Zak, D. R. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9, 921–933 (2006).

    Google Scholar 

  81. DeForest, J. L., Zak, D. R., Pregitzer, K. S. & Burton, A. J. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci. Soc. Am. J. 68, 132–138 (2004).

    Google Scholar 

  82. Oades, J. M. Soil organic-matter and structural stability — mechanisms and implications for management. Plant Soil 76, 319–337 (1984).

    Google Scholar 

  83. Thorn, K. A. & Mikita, M. A. Ammonia fixation by humic substances — a N-15 and C-13 NMR-study. Sci. Total Environ. 113, 67–87 (1992).

    Google Scholar 

  84. Nömmik, H. & Vahtras, K. Retention and fixation of ammonium and ammonia in soils. Agronomy Monographs 22, 123–171 (1982).

    Google Scholar 

  85. Burdon, J. Are the traditional concepts of the structures of humic substances realistic? Soil Sci. 166, 752–769 (2001).

    Google Scholar 

  86. Clinton, P. W., Newman, R. H. & Allen, R. B. Immobilization of N-15 in forest litter studied by N-15 CPMAS NMR spectroscopy. Eur. J. Soil Sci. 46, 551–556 (1995).

    Google Scholar 

  87. Aber, J. et al. Nitrogen saturation in temperate forest ecosystems — Hypotheses revisited. Bioscience 48, 921–934 (1998).

    Google Scholar 

  88. Sutton, R. & Sposito, G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 39, 9009–9015 (2005).

    Google Scholar 

  89. Bowden, R. D., Davidson, E., Savage, K., Arabia, C. & Steudler, P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecol. Manag. 196, 43–56 (2004).

    Google Scholar 

  90. Schulze, E. D. et al. Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance. Nature Geosci. 2, 842–850 (2009).

    Google Scholar 

  91. Janssens, I. A. et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Change Biol. 7, 269–278 (2001).

    Google Scholar 

  92. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Google Scholar 

  93. Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).

    Google Scholar 

  94. Reichstein, M. et al. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob. Change Biol. 13, 634–651 (2007).

    Google Scholar 

  95. Piao, S. L. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    Google Scholar 

  96. Schulze, E. D., Oren, R. & Lange, O. L. in Processes Leading to Forest Decline Vol. 77 (eds Schulze, E. D., Lange, O. L. & Oren, R.) 460–468 (Springer, 1989).

    Google Scholar 

  97. Braun, S., Thomas, V. F. D., Quiring, R. & Fluckiger, W. Environ. Pollut. 10.1016/j.envpol.2009.11.030 (in the press).

  98. Matson, P. A., McDowell, W. H., Townsend, A. R. & Vitousek, P. M. The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46, 67–83 (1999).

    Google Scholar 

  99. Bonan, G. Carbon cycle: Fertilizing change. Nature Geosci. 1, 645–646 (2008).

    Google Scholar 

  100. Zaehle, S., Friedlingstein, P. & Friend, A. D. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 37, L01401 (2010).

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of L. Misson, good friend and esteemed scientist. The authors acknowledge J. Gash for language editing. I.A.J. and R.C. acknowledge support from the UA-Research Centre of Excellence ECO Methusalem funding, the EC-FP7 project GHG Europe, and the Flemish National Science Foundation (FWO-Flanders). S.L. is funded by the ERC starting grant 242564. B.E.L. acknowledges the Office of Science (BER) US Department of Energy (award DE-FG02-04ER63911) for support of Ameriflux synthesis. J.A.S. acknowledges support from the UK Natural Environment Research Council (grant NE/E004512/1).

Author information

Authors and Affiliations

Authors

Contributions

I.A.J., W.D. and S.L. conceived the manuscript. S.L., W.D., J.A.S. and B.E.L. provided the data. W.D. and S.L. performed the analyses. All authors collaborated in the writing.

Corresponding author

Correspondence to I. A. Janssens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssens, I., Dieleman, W., Luyssaert, S. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geosci 3, 315–322 (2010). https://doi.org/10.1038/ngeo844

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing