Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plagioclase breakdown as an indicator for shock conditions of meteorites

Abstract

Shocked meteorites that were formed when their parent body underwent shock metamorphism often contain the mineral plagioclase either in an amorphous form or in its high-pressure phase. The peak pressures in shock metamorphism can be constrained by shock-recovery experiments that determine the amorphization pressures of plagioclase1,2,3. However, in these experiments temperatures have been unrealistically low and timescales much shorter than those in natural events. Here we present in situ X-ray diffraction measurements of two kinds of plagioclase feldspar in conditions of increasing pressures and temperatures. We find that the amorphization pressure of plagioclase decreases with increasing temperature, suggesting that previous studies overestimated this parameter1,2,3. We also found that the mineral jadeite forms first from amorphous plagioclase, whereas the nucleation of other minerals such as stishovite or garnet is significantly delayed. The occurrence of jadeite in shocked meteorites that do not contain stishovite4,5,6,7,8 can therefore be explained as a result of the crystallization kinetics. We conclude that the study of plagioclase breakdown can constrain the pressure–temperature–time history of shock events, and thus help to reconstruct the collisional history of asteroids in the early Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressure and temperature conditions for plagioclase amorphization and crystallization of the high-pressure phases.
Figure 2: Changes of X-ray diffraction patterns during amorphization and crystallization in albite.
Figure 3: Crystallization kinetics of high-pressure phases from (partially) amorphous plagioclase.
Figure 4: Formation of high-pressure phases on shock-event timescales.

Similar content being viewed by others

References

  1. Ostertag, R. Proc. Lunar Planet. Sci. Conf. 14 J. Geophys. Res. 88, B364–B376 (1983).

    Article  Google Scholar 

  2. Stöffler, D. et al. Shock metamorphism and petrography of the Shergotty achondrite. Geochim. Cosmochim. Acta 50, 889–903 (1986).

    Article  Google Scholar 

  3. Stöffler, D., Keil, K. & Scott, E. R. D. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

    Article  Google Scholar 

  4. Gillet, P., Chen, M., Dubrovinsky, L. & El Goresy, A. Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorites. Science 287, 1633–1636 (2000).

    Article  Google Scholar 

  5. Kimura, M., Suzuki, A., Kondo, T., Ohtani, E. & El Goresy, A. Natural occurrence of high-pressure phases, jadeite, hollandite, wadsleyite and majorite-pyrope garnet in an H-chondrite, Y75100. Meteorit. Planet. Sci. 35, A87–A88 (2000).

    Google Scholar 

  6. Ohtani, E. et al. Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: Constraints on shock conditions and parent body size. Earth Planet. Sci. Lett. 227, 505–515 (2004).

    Article  Google Scholar 

  7. Ohtani, E., Kimura, Y., Kimura, M., Kubo, T. & Takata, T. High-pressure minerals in shocked L6-chondrites: Constraints on impact conditions. Shock Waves 16, 45–52 (2006).

    Article  Google Scholar 

  8. Miyahara, M. et al. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. Proc. Natl Acad. Sci. USA 105, 8542–8547 (2008).

    Article  Google Scholar 

  9. Wayte, G. J., Worden, R. H., Rubie, D. C. & Droop, G. T. R. A TEM study of disequilibrium plagioclase breakdown at high pressure: The role of infiltrating fluid. Contrib. Mineral. Petrol. 101, 426–437 (1989).

    Article  Google Scholar 

  10. Yagi, A., Suzuki, T. & Akaogi, M. High pressure transitions in the system KAl3O8–NaAlSi3O8 . Phys. Chem. Miner. 21, 12–17 (1994).

    Article  Google Scholar 

  11. Tomioka, N., Mori, H. & Fujino, K. Shock-induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite. Geophys. Res. Lett. 27, 3997–4000 (2000).

    Article  Google Scholar 

  12. El Goresy, A., Chen, M., Gillet, Ph. & Dubrovinsky, L. S. Shock-induced high-pressure phase transition of labradorite to hollandite ‘(Na47–Ca51–K2)’ in Zagami and the assemblage hollandite ‘(Na80–Ca12–K8)’+jadeite in L chondrites: Constraints to peak shock pressures. Meteorit. Planet. Sci. 35, A51 (2000).

    Google Scholar 

  13. Xie, Z. & Sharp, T. G. Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth Planet. Sci. Lett. 254, 433–445 (2007).

    Article  Google Scholar 

  14. Beck, P. et al. A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1−x)Al3+xSi3−xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett. 219, 1–12 (2004).

    Article  Google Scholar 

  15. Milton, D. J. & DeCarli, P. S. Maskelynite formation by explosive shock. Science 140, 670–671 (1963).

    Article  Google Scholar 

  16. Gibbons, R. V. & Ahrens, T. J. Effects of shock pressures on calcic plagioclase. Phys. Chem. Miner. 1, 95–107 (1977).

    Article  Google Scholar 

  17. William, Q. & Jeanloz, R. Static amorphization of anorthite at 300 K and comparison with diaplectic glass. Nature 338, 413–415 (1989).

    Article  Google Scholar 

  18. Daniel, I. et al. High-pressure behaviour of anorthite: Compression and amorphization. J. Geophys. Res. 102, 10313–10325 (1997).

    Article  Google Scholar 

  19. Tomioka, N. et al. Static amorphization of plagioclase: Comparison to the formation pressure of diaplectic glass in shock experiments. Meteorit. Planet. Sci. 42, A148 (2007).

    Google Scholar 

  20. Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice’ at 77 K and 10 kbar: A new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article  Google Scholar 

  21. Hemley, R. J. et al. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).

    Article  Google Scholar 

  22. Richet, P. & Gillet, P. Pressure-induced amorphization of minerals: A review. Eur. J. Mineral. 9, 907–933 (1997).

    Article  Google Scholar 

  23. Christian, J. W. Transformations in Metals and Alloys, Part I, Equilibrium and General Kinetic Theory (Pergamon, 1975).

    Google Scholar 

  24. Beck, P., Gillet, Ph., El Goresy, A. & Mostefaoui, S. Timescales of shock processes in chondritic and martian meteorites. Nature 435, 1071–1074 (2005).

    Article  Google Scholar 

  25. James, O. B. Jadeite: Shock induced formation from oligocalse, Rise Crater, Germany. Science 165, 1005–1008 (1969).

    Article  Google Scholar 

  26. Chen, M. & El Goresy, A. The nature of maskelynite in shocked meteorites: Not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures. Earth Planet. Sci. Lett. 179, 489–502 (2000).

    Article  Google Scholar 

  27. Malavergne, V., Guyot, F., Benzerara, K. & Martinez, I. Description of new shock-induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteorit. Planet. Sci. 36, 1297–1305 (2001).

    Article  Google Scholar 

  28. Sharp, T. G., Xie, Z., Aramovich, C. J. & De Carli, P. S. Pressure-temperature histories of shock-induced melt veins in chondrites. Lunar Planet. Sci. 34, 1278 (2003).

    Google Scholar 

  29. Liu, X. Phase relations in the system KAl3O8–NaAlSi3O8 at high pressure-high temperature conditions and their implication for the petrogenesis of lingunite. Earth Planet. Sci. Lett. 246, 317–325 (2006).

    Article  Google Scholar 

  30. Tsuchiya, T. First-principles prediction of the PVT equation of state of gold and the 660-km discontinuity in Earth’s mantle. J. Geophys. Res. 108, 2462 2003.

Download references

Acknowledgements

We thank N. Tomioka, M. Miyahara, S. Ozawa, T. Nakamura, Y. Nakamuta and M. Akaogi for valuable discussions. We also thank A. El Goresy for constructive reviews. This work was partially supported by a Grant-in-Aid for Scientific Research from the Japanese government (to T. Kubo and M. Kimura). In situ X-ray diffraction experiments were carried out at AR-NE5C and BL14C2 of the Photon Factory (proposal no. 2004G225) and BL04B1 of SPring-8 (proposal no. 2006B1430).

Author information

Authors and Affiliations

Authors

Contributions

T. Kubo and M.K. organized the research project and completed the manuscript. T. Kubo carried out most of the experiments and analyses of the data with the help of T. Kato, M.N., A.T., T. Kikegawa, and K.F. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tomoaki Kubo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, T., Kimura, M., Kato, T. et al. Plagioclase breakdown as an indicator for shock conditions of meteorites. Nature Geosci 3, 41–45 (2010). https://doi.org/10.1038/ngeo704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing