Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sea surface cooling at the Equator by subsurface mixing in tropical instability waves

Abstract

Changes in sea surface temperature of equatorial waters have critical effects on the large-scale atmospheric circulation1,2,3. So far, large-scale, energetic tropical instability waves in equatorial waters have been thought to warm the sea surface through both meridional and zonal advection4,5. Here, we present shipboard profiling measurements of turbulence kinetic-energy dissipation rate that reveal unanticipated vigorous mixing associated with tropical instability waves. The meridional tropical instability-wave shear increases the shear above the core of the Equatorial Undercurrent, which is already large, nudging the flow toward instability. As a consequence, turbulence dissipation rates and heat fluxes are many times greater than previous measurements at the same location but in the absence of tropical instability waves. The vertical divergence of turbulence heat flux is sufficient to cool the upper layer by 2 K per month, and heat the core of the Equatorial Undercurrent by 10 K per month. Long-term records at 140 W further reveal that cooling of the sea surface is significantly correlated to tropical-instability-wave kinetic energy. Thus, seasonal surface cooling in the central equatorial Pacific may be largely caused by mixing induced by tropical instability waves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurements from 16-day profiling time series at 0,140 W in boreal autumn 2008.
Figure 2: Historical comparison of turbulence and heat flux at 0,140 W.
Figure 3: Nudging of flow towards instability through enhanced meridional shear.
Figure 4: Relation of SST to TIW energy at 140 W.

Similar content being viewed by others

References

  1. Maloney, E. D. & Kiehl, J. T. MJO-related SST variations over the tropical eastern Pacific during Northern Hemisphere summer. J. Clim. 15, 675–689 (2002).

    Article  Google Scholar 

  2. Hashizume, H. et al. Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Clim. 15, 3379–3391 (2002).

    Article  Google Scholar 

  3. McPhaden, M. J., Zebiak, S. E. & Glanz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

    Article  Google Scholar 

  4. Wang, W. & McPhaden, M. J. The surface layer heat balance in the equatorial Pacific ocean. Part I: Mean seasonal cycle. J. Phys. Oceanogr. 29, 1812–1831 (1999).

    Article  Google Scholar 

  5. Jochum, M., Cronin, M. F., Kessler, W. S. & Shea, D. Observed horizontal temperature advection by tropical instability waves. Geophys. Res. Lett. 34, L09604 (2007).

    Article  Google Scholar 

  6. Moum, J. N., Caldwell, D. R. & Paulson, C. A. Mixing in the equatorial surface layer and thermocline. J. Geophys. Res. 94, 2005–2021 (1989).

    Article  Google Scholar 

  7. Peters, H., Gregg, M. C. & Toole, J. M. On the parameterization of equatorial turbulence. J. Geophys. Res. 93, 1199–1218 (1988).

    Article  Google Scholar 

  8. Moum, J. N. & Caldwell, D. R. Local influences on shear flow turbulence in the equatorial ocean. Science 230, 315–316 (1985).

    Article  Google Scholar 

  9. Gregg, M. C., Peters, H., Wesson, J. C., Oakey, N. S. & Shay, T. J. Intensive measurements of turbulence and shear in the Equatorial Undercurrent. Nature 318, 140–144 (1985).

    Article  Google Scholar 

  10. Hebert, D., Moum, J. N., Paulson, C. P. & Caldwell, D. R. Turbulence and internal waves at the equator. Part II: Details of a single event. J. Phys. Oceanogr. 22, 1346–1356 (1992).

    Article  Google Scholar 

  11. Lien, R.-C., Caldwell, D. R., Gregg, M. C. & Moum, J. N. Turbulence variability at the Equator in the Central Pacific at the beginning of the 1991–93 El Niño. J. Geophys. Res. 100, 6881–6898 (1995).

    Article  Google Scholar 

  12. Zaron, E. D. & Moum, J. N. A new look at Richardson number mixing schemes for equatorial ocean modeling. J. Phys. Oceanogr. 39, 2652–2664 (2009).

    Article  Google Scholar 

  13. McPhaden, M. J. Genesis and evolution of the 1997–98 El Niño. Science 283, 950–954 (1999).

    Article  Google Scholar 

  14. Menkes, C. E., Vialard, J., Kennan, S. C., Boulanger, J. & Madec, G. V. A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr. 36, 847–865 (2006).

    Article  Google Scholar 

  15. Lien, R.-C., D’Asaro, E. A. & Menkes, C. E. Modulation of equatorial turbulence by tropical instability waves. Geophys. Res. Lett. 35, L24607 (2008).

    Article  Google Scholar 

  16. Legeckis, R. Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science 197, 1179–1181 (1977).

    Article  Google Scholar 

  17. Miller, L., Watts, D. R. & Wimbush, M. Oscillations of dynamic topography in the eastern equatorial Pacific. J. Phys. Oceanogr. 15, 1759–1770 (1985).

    Article  Google Scholar 

  18. Strutton, P. G., Ryan, J. P. & Chavez, F. P. Enhanced chlorophyll associated with tropical instability waves in the equatorial Pacific. Geophys. Res. Lett. 28, 2005–2008 (2001).

    Article  Google Scholar 

  19. McPhaden, M. J. Monthly period oscillations in the Pacific North equatorial countercurrent. J. Geophys. Res. 101, 6337–6359 (1996).

    Article  Google Scholar 

  20. Halpern, D., Knox, R. A. & Luther, D. S. Observations of 20-day period meridional current oscillations in the upper ocean along the Pacific Equator. J. Phys. Oceanogr. 18, 1514–1534 (1988).

    Article  Google Scholar 

  21. Lyman, J. M., Johnson, G. C. & Kessler, W. S. Structure of 17-day versus 33-day tropical instability waves in the equatorial Pacific. J. Phys. Oceanogr. 37, 855–872 (2007).

    Article  Google Scholar 

  22. Moum, J. N., Hebert, D., Paulson, C. A. & Caldwell, D. R. Turbulence and internal waves at the Equator. Part I: Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr. 22, 1330–1345 (1992).

    Article  Google Scholar 

  23. Drazin, P. G. & Reid, W. H. Hydrodynamic Stability (Cambridge Univ. Press, 1981).

    Google Scholar 

  24. Osborn, T. R. Estimates of the local rate of turbulent diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 83–89 (1980).

    Article  Google Scholar 

  25. Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B. & Young, G. S. Bulk parameterization of air–sea fluxes in TOGA COARE. J. Geophys. Res. 101, 3747–3767 (1996).

    Article  Google Scholar 

  26. McPhaden, M. J. TOGA-TAO and the 1991–93 El Niño-Southern Oscillation event. Oceanography 6, 36–44 (1993).

    Article  Google Scholar 

  27. Masina, S., Philander, S. G. H. & Bush, A. B. G. An analysis of tropical instability waves in a numerical model of the Pacific Ocean 2. Generation and energetics of the waves. J. Geophys. Res. 104, 29637–29661 (1999).

    Article  Google Scholar 

  28. Moum, J. N., Gregg, M. C., Lien, R.-C. & Carr, M. E. Comparison of turbulent kinetic energy dissipation rates from two ocean microstructure profilers. J. Atmos. Ocean. Technol. 12, 346–366 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation (0424133, 0728375). Thanks to M. Neeley-Brown, R. Kreth, K. Chabuk, J. Johnson, A. Schmittner, M.-H. Chang and J. Milliard for their assistance in obtaining these measurements, to the captain and crew of the R/V Wecoma for provision of an experimental platform and to NOAA’s TAO Project office for the equatorial mooring data. A. Schmittner, E. Shroyer, D. Chelton, M. McPhaden and B. Smyth provided comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to J. N. Moum.

Supplementary information

Supplementary Information

Supplementary Information (PDF 757 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moum, J., Lien, RC., Perlin, A. et al. Sea surface cooling at the Equator by subsurface mixing in tropical instability waves. Nature Geosci 2, 761–765 (2009). https://doi.org/10.1038/ngeo657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing