Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intense polar temperature inversion in the middle atmosphere on Mars

Abstract

Current understanding of weather, climate and global atmospheric circulation on Mars is incomplete, in particular at altitudes above about 30 km. General circulation models for Mars1,2,3,4,5,6 are similar to those developed for weather and climate forecasting on Earth and require more martian observations to allow testing and model improvements. However, the available measurements of martian atmospheric temperatures, winds, water vapour and airborne dust are generally restricted to the region close to the surface and lack the vertical resolution and global coverage that is necessary to shed light on the dynamics of Mars’ middle atmosphere at altitudes between 30 and 80 km (ref. 7). Here we report high-resolution observations from the Mars Climate Sounder instrument8 on the Mars Reconnaissance Orbiter9. These observations show an intense warming of the middle atmosphere over the south polar region in winter that is at least 10–20 K warmer than predicted by current model simulations. To explain this finding, we suggest that the atmospheric downwelling circulation over the pole, which is part of the equator-to-pole Hadley circulation, may be as much as 50% more vigorous than expected, with consequences for the cycles of water, dust and CO2 that regulate the present-day climate on Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A cross-section of the atmospheric temperature in the southern hemisphere of Mars for mid-southern winter (Ls=136, 16 Nov 2006).
Figure 2: Individual temperature profiles near the south pole.
Figure 3: Comparison of measured and model-generated temperature profiles.
Figure 4: Tidal and gravity wave structure in vertical temperature profiles for northern mid-latitudes (35 N to 53 N) between LS=150 and 170.

Similar content being viewed by others

References

  1. Haberle, R. M. et al. Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model. J. Geophys. Res. 98, 3093–3124 (1993).

    Article  Google Scholar 

  2. Wilson, R. J. & Hamilton, K. P. Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci. 53, 1290–1326 (1996.).

    Article  Google Scholar 

  3. Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24175 (1999).

    Article  Google Scholar 

  4. Lewis, S. R. et al. A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999).

    Article  Google Scholar 

  5. Richardson, M. I., Toigo, A. D. & Newman, C. E. A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112, E09001 (2007).

    Google Scholar 

  6. Medvedev, A. S. & Hartogh, P. Winter polar warmings and the meridional transport on Mars simulated with a general circulation model. Icarus 186, 97–110 (2007).

    Article  Google Scholar 

  7. Read, P. L. & Lewis, S. R. The Martian Climate Revisited (Springer-Praxis, 2004).

    Google Scholar 

  8. McCleese, D. J. et al. Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res. 112, doi:10.1029/2006JE002790 (2007).

  9. Zurek, R. W. & Smrekar, S. J. An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J. Geophys. Res. 112, doi:10.1029/2006JE002701 (2007).

  10. Conrath, B., R. et al. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9. J. Geophys. Res. 78, 4267–4278 (1973).

    Article  Google Scholar 

  11. Jakosky, B. & Martin, T. Z. Mars: North-polar atmospheric warming during dust storms. Icarus 72, 528–534 (1987).

    Article  Google Scholar 

  12. Smith, M. D., Pearl, J. C., Conrath, B. J. & Christensen, P. R. Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution. J. Geophys. Res 106, 23929–23945 (2001).

    Article  Google Scholar 

  13. Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics (Academic, 1987).

    Google Scholar 

  14. Creasey, J. E., Forbes, J. M. & Hinson, D. P. Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data. Geophys. Res. Lett. 33, L01803 (2006).

    Google Scholar 

  15. Barnes, J. R. Possible effects of breaking gravity waves on the circulation of the middle atmosphere of Mars. J. Geophys Res. 95, 1401–1421 (1990).

    Article  Google Scholar 

  16. Zurek, R. W. & Haberle, R. M. Zonally symmetric response to atmospheric tidal forcing in the dusty Martian atmosphere. J. Atmos. Sci. 45, 2469–2485 (1988).

    Article  Google Scholar 

  17. Wilson, R. J. A general circulation model simulation of the Martian polar warming. Geophys. Res. Lett. 24, 123–126 (1997).

    Article  Google Scholar 

  18. Seiff, A. & Kirk, D. B. Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977).

    Article  Google Scholar 

  19. Hinson, D. P. & Wilson, R. J. Temperature inversions, thermal tides, and water ice clouds in the atmosphere of Mars. J. Geophys. Res. 109, E01002 (2004).

    Google Scholar 

  20. Wilson, R. J., Lewis, S. R., Montabone, L. & Smith, M. D. Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys. Res. Lett. 35, L07202 (2008).

    Google Scholar 

  21. Haberle, R. M., Leovy, C. B. & Pollack, J. B. Some effects of global dust storms on the atmospheric circulation of Mars. Icarus 50, 322–367 (1982).

    Article  Google Scholar 

  22. Schneider, E. K. Martian great dust storms: interpretive axially symmetric models. Icarus 35, 302–331 (1983).

    Article  Google Scholar 

  23. Anderson, E. & Leovy, C. Mariner 9 television limb observations of dust and ice hazes on Mars. J. Atmos. Sci. 35, 723–734 (1978).

    Article  Google Scholar 

  24. Jaquin, F., Gierasch, P. & Kahn, R. The vertical structure of limb hazes in the Martian atmosphere. Icarus 68, 442–461 (1986).

    Article  Google Scholar 

  25. Chahine, M. T. A general relaxation method for inverse solutions of the full radiative transfer equation. J. Atmos. Sci 29, 741–747 (1972).

    Article  Google Scholar 

  26. Rodgers, C. D. Inverse Methods for Atmospheric Sounding (World Scientific, 2000).

    Book  Google Scholar 

  27. Rothman, L. S. et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer. 96, 139–204 (2005).

    Article  Google Scholar 

  28. Wolff, M. J. et al. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. 111, E12S17 (2006).

    Article  Google Scholar 

  29. Warren, S. G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23, 1206–1225 (1984).

    Article  Google Scholar 

  30. McCleese, D. J. et al. Remote sensing of the atmosphere of Mars using infrared pressure modulator and filter radiometry. Appl. Opt. 25, 4232–4245 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge J. Shirley, C. Backus, T. Pavlicek and E. Sayfi for their contribution to the acquisition and analysis of MCS data. The research described in this letter was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and in the UK with the support of the Science, Technology and Facilities Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. J. McCleese or F. W. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCleese, D., Schofield, J., Taylor, F. et al. Intense polar temperature inversion in the middle atmosphere on Mars. Nature Geosci 1, 745–749 (2008). https://doi.org/10.1038/ngeo332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing