Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite

Abstract

Iron-bearing silicate post-perovskite and perovskite are believed to be the dominant minerals of the lowermost mantle and the lower mantle, respectively. The electronic spin state of iron—a quantum property of every electron associated with its angular momentum—can strongly influence the properties of these mineral phases and thereby the nature of the Earth’s interior1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. However, the spin state of iron at lowermost-mantle pressure/temperature conditions is poorly known16,17,18,19,20,21,22,23,24,25,26,27. Here we use in situ X-ray emission, X-ray diffraction and synchrotron Mössbauer spectroscopic techniques to measure the spin and valence states of iron in post-perovskite and perovskite at conditions relevant to the lowermost mantle25,28. We find that Fe2+ exists predominantly in the intermediate-spin state with a total spin number of one in both phases. We conclude that changes in the radiative thermal conductivity and iron partitioning in the lowermost mantle would thus be controlled by the structural transition from perovskite to post-perovskite, rather than the electronic transition of Fe2+.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray emission spectra of iron.
Figure 2: Representative X-ray diffraction patterns.
Figure 3: Average spin number of Fe2+.
Figure 4: Representative synchrotron Mössbauer spectra.

Similar content being viewed by others

References

  1. Garnero, E. J., Maupin, V., Lay, T. & Fouch, M. J. Variable azimuthal anisotropy in Earth’s lowermost mantle. Science 306, 259–261 (2004).

    Article  Google Scholar 

  2. Hernlund, J. W., Thomas, C. & Tackley, P. J. A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434, 882–886 (2005).

    Article  Google Scholar 

  3. Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. S. A post-perovskite lens and D′′ heat flux beneath the central Pacific. Science 314, 1272–1276 (2006).

    Article  Google Scholar 

  4. van der Hilst, R. D. et al. Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region. Science 315, 1813–1817 (2007).

    Article  Google Scholar 

  5. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . Science 304, 855–858 (2004).

    Article  Google Scholar 

  6. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D′′ layer. Nature 430, 445–448 (2004).

    Article  Google Scholar 

  7. Merkel, S. et al. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311, 644–646 (2006).

    Article  Google Scholar 

  8. Matyska, C. & Yuen, D. A. The importance of radiative heat transfer on superplumes in the lower mantle with the new post-perovskite phase change. Earth Planet. Sci. Lett. 234, 71–81 (2005).

    Article  Google Scholar 

  9. Matyska, C. & Yuen, D. A. Lower mantle dynamics with the post-perovskite phase change, radiative thermal conductivity, temperature- and depth-dependent viscosity. Phys. Earth Planet. Inter. 154, 196–207 (2006).

    Article  Google Scholar 

  10. Naliboff, J. B. & Kellogg, L. H. Dynamic effects of a step-wise increase in thermal conductivity and viscosity in the lowermost mantle. Geophys. Res. Lett. 33, L12S09 (2006).

    Article  Google Scholar 

  11. Buffett, B. A bound on heat flow below a double crossing of the perovskite-postperovskite phase transition. Geophys. Res. Lett. 34, L17302 (2007).

    Article  Google Scholar 

  12. Hofmeister, A. M. & Yuen, D. A. Critical phenomena in thermal conductivity: Implications for lower mantle dynamics. J. Geodyn. 44, 186–199 (2007).

    Article  Google Scholar 

  13. Mao, W. L. et al. Ferromagnesian postperovskite silicates in the D′′ layer of the Earth. Proc. Natl Acad. Sci. USA 101, 15867–15869 (2004).

    Article  Google Scholar 

  14. Kobayashi, Y. et al. Fe–Mg partitioning between (Mg,Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys. Res. Lett. 32, L19302 (2005).

    Google Scholar 

  15. Murakami, M., Hirose, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys. Res. Lett. 32, L03304 (2005).

    Article  Google Scholar 

  16. Lin, J. F., Jacobsen, S. D. & Wentzcovitch, R. M. Electronic spin transition of iron in the Earth’s deep mantle. Eos Trans. Am. Geophys. Union 88, 13–17 (2007).

    Article  Google Scholar 

  17. Badro, J. et al. Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science 305, 383–386 (2004).

    Article  Google Scholar 

  18. Li, J. et al. Electronic spin state of iron in lower mantle perovskite. Proc. Natl Acad. Sci. USA 101, 14027–14030 (2004).

    Article  Google Scholar 

  19. Jackson, J. M. et al. A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa. Am. Mineral. 90, 199–205 (2005).

    Article  Google Scholar 

  20. Goncharov, A. F., Struzhkin, V. V. & Jacobsen, S. D. Reduced radiative conductivity of low-spin (Mg,Fe)O in the lower mantle. Science 312, 1205–1208 (2006).

    Google Scholar 

  21. Stackhouse, S., Brodholt, J., Dobson, D. P. & Price, G. D. Electronic spin transitions and the seismic properties of ferrous iron bearing MgSiO3 post-perovskite. Geophys. Res. Lett. 33, L12S03 (2006).

    Article  Google Scholar 

  22. Zhang, F. & Oganov, A. R. Valence state and spin transitions of iron in Earth’s mantle silicates. Earth Planet. Sci. Lett. 249, 436–443 (2006).

    Article  Google Scholar 

  23. Bengtson, A., Persson, K. & Morgan, D. Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1−x,Fex)SiO3 system. Earth Planet. Sci. Lett. 265, 535–545 (2008).

    Article  Google Scholar 

  24. Keppler, H., Kantor, I. & Dubrovinsky, L. S. Optical absorption spectra of ferropericlase to 84 GPa. Am. Mineral. 92, 433–436 (2007).

    Article  Google Scholar 

  25. Lin, J. F. et al. Spin transition zone in Earth’s lower mantle. Science 317, 1740–1743 (2007).

    Article  Google Scholar 

  26. McCammon, C. et al. Intermediate-spin ferrous iron in lower mantle perovskite. Nature Geosci.doi:10.1038/ngeo309 (2008).

  27. Stackhouse, S., Brodholt, J. P. & Price, G. D. Electronic spin transitions in iron-bearing MgSiO3 perovskite. Earth Planet. Sci. Lett. 253, 282–290 (2007).

    Article  Google Scholar 

  28. Sturhahn, W. Nuclear resonant spectroscopy. J. Phys. Condens. Matter 16, S497–S530 (2004).

    Article  Google Scholar 

  29. Fei, Y. et al. Toward an internally consistent pressure scale. Proc. Natl Acad. Sci. USA 104, 9182–9186 (2007).

    Article  Google Scholar 

  30. Vankó, G. et al. Probing the 3d spin momentum with X-ray emission spectroscopy: The case of molecular-spin transitions. J. Phys. Chem. B 110, 11647–11653 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge GSECARS and XOR-3, APS, ANL for the use of the synchrotron and laser facilities. We thank J. Nalibof, E. J. Garnero, B. Maddox, W. Sturhahn, J. Lassiter and S. Grand for helpful discussions. Use of the Advanced Photon Source was supported by US Department of Energy, Office of Science, Basic Energy Sciences, under contract No. DE-AC02-06CH11357. GSECARS is supported by NSF Earth Sciences (EAR-0622171) and DOE Geosciences (DE-FG02-94ER14466). This work at Lawrence Livermore National Laboratory was carried out under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. J.F.L. was partially supported by the Lawrence Livermore Fellowship. G.V. acknowledges financial support from the Hungarian Research Fund (OTKA) under contract No. K72597 and from the Bolyai Fellowship. V.V.S. acknowledges financial support from DOE.

Author information

Authors and Affiliations

Authors

Contributions

J.F.L., V.B.P., P.D., V.V.S. and A.K. contributed to the X-ray emission experiments, and J.F.L., E.E.A. and J.Z. contributed to the Mössbauer experiments. H.W. synthesized the starting sample. G.V. and E.E.A. contributed to X-ray emission and Mössbauer data analyses, respectively. All authors participated in the writing and revision of the paper.

Corresponding author

Correspondence to Jung-Fu Lin.

Supplementary information

Supplementary Information

Supplementary figures S1-S6 and table S1 (PDF 356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JF., Watson, H., Vankó, G. et al. Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nature Geosci 1, 688–691 (2008). https://doi.org/10.1038/ngeo310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing