Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Complexity in estimating past and future extreme short-duration rainfall

Abstract

Warming of the climate is now unequivocal. The water holding capacity of the atmosphere increases by about 7% per °C of warming, which in turn raises the expectation of more intense extreme rainfall events. Meeting the demand for robust projections for extreme short-duration rainfall is challenging, however, because of our poor understanding of its past and future behaviour. The characterization of past changes is severely limited by the availability of observational data. Climate models, including typical regional climate models, do not directly simulate all extreme rainfall producing processes, such as convection. Recently developed convection-permitting models better simulate extreme precipitation, but simulations are not yet widely available due to their computational cost, and they have their own uncertainties. Attention has thus been focused on precipitation–temperature relationships in the hope of obtaining more robust extreme precipitation projections that exploit higher confidence temperature projections. However, the observed precipitation–temperature scaling relationships have been established almost exclusively by linking precipitation extremes with day-to-day temperature variations. These scaling relationships do not appear to provide a reliable basis for projecting future precipitation extremes. Until better methods are available, the relationship of the atmosphere's water holding capacity with temperature provides better guidance for planners in the mid-latitudes, albeit with large uncertainties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term trends in, and relationship between, extreme precipitation and dew-point temperatures.
Figure 2: Relationship between extreme 1-hour precipitation and the daily dew-point temperatures during wet days in summer.
Figure 3: Schematic representation of possible shifts of binning curves in the warmer world assuming no circulation change.
Figure 4: The binning curves of hourly precipitation shift right-downwards in simulations of the future warmer climate with conventional RCMs.

Similar content being viewed by others

References

  1. Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1–27 (IPCC, Cambridge Univ. Press, 2013).

  2. Boer, G. J. Climate change and the regulation of the surface moisture and energy budgets. Clim. Dynam. 8, 225–239 (1993).

    Article  Google Scholar 

  3. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrological cycle. Nature 419, 224–232 (2002).

    Google Scholar 

  4. Trenberth, K. E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change 42, 327–339 (1999).

    Article  Google Scholar 

  5. Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  6. Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  7. O'Gorman, P. A. Precipitation extreme under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    Article  Google Scholar 

  8. Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change 119, 345–357 (2013).

    Article  Google Scholar 

  9. Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C. & Min, S.-K. Attributing intensification of precipitation extremes to human influence. Geophy. Res. Lett. 40, 5252–5257 (2013).

    Article  Google Scholar 

  10. O'Gorman, P. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  11. Shi, X. & Durran, D. R. The response of orographic precipitation over idealized mid-latitude mountains due to global increases in CO2 . J. Clim. 27, 3938–3956 (2014).

    Article  Google Scholar 

  12. Shi, X. & Durran, D. R. Sensitivities of extreme precipitation to global warming are lower over mountain than over oceans and plains. J. Clim. 29, 4779–4791 (2016).

    Article  Google Scholar 

  13. O'Gorman, P. A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 5, 697–700 (2012).

    Article  Google Scholar 

  14. Kumar, S. et al. Terrestrial contribution to the heterogeneity in hydrological changes under global warming. Wat. Resour. Res. 52, 3127–3142 (2016).

    Article  Google Scholar 

  15. O'Gorman, P. A. & Muller, C. J. How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett. 5, 025207 (2010).

    Article  Google Scholar 

  16. Eden, J. M., Wolter, K., Otto, F. E. L. & van Oldenborgh, G. J. Multi-method attribution analysis of extreme precipitation in Boulder, Colorado. Environ. Res. Lett. 11, 124009 (2016).

    Article  Google Scholar 

  17. Min, S. K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article  Google Scholar 

  18. Lenderink, G. & Attema, J. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environ. Res. Lett. 10, 085001 (2015).

    Article  Google Scholar 

  19. Wasko, C., Sharma, A. & Johnson, F. Does storm duration modulate the extreme precipitation–temperature scaling relationship? Geophys. Res. Lett. 42, 8783–8790 (2015).

    Article  Google Scholar 

  20. Lenderink, G. & van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).

    Article  Google Scholar 

  21. Lenderink, G. & van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 5, 025208 (2010).

    Article  Google Scholar 

  22. Hardwick-Jones, R., Westra, S. & Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 37, L22805 (2010).

    Article  Google Scholar 

  23. Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh G. J. Scaling and trends of hourly precipitation extremes in two different climate zones — Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 8, 4701–4719 (2011).

    Article  Google Scholar 

  24. Shaw, S. B., Royem, A. A. & Riha, S. J. The relationship between extreme hourly precipitation and surface temperatures in different hydroclimatic regions of the United States. J. Hydrometeorol. 12, 319–325 (2011).

    Article  Google Scholar 

  25. Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 38, L16708 (2011).

    Article  Google Scholar 

  26. Yu, R. & Li, J. Hourly rainfall changes in response to surface air temperature over eastern contiguous China. J. Clim. 25, 6851–6861 (2012).

    Article  Google Scholar 

  27. Mishra, V., Wallace, J. M. & Lettenmaier, D. P. Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys. Res. Lett. 39, L16403 (2012).

    Google Scholar 

  28. Berg, P. & Haerter, J. O. Unexpected increase in precipitation intensity with temperature — a result of mixing precipitation types? Atmos. Res. 119, 56–61 (2013).

    Article  Google Scholar 

  29. Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

    Article  Google Scholar 

  30. Drobinski, P., Alonzo, B., Bastin, S., Da Silva, N. & Muller, C. J. Scaling of precipitation extremes with temperature in the French Mediterranean region: what explains the hook shape? J. Geophys. Res. Atmos. 121, 3100–3119 (2016a).

  31. Drobinski, P. et al. Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Clim. Dynam. http://dx.doi.org/10.1007/s00382-016-3083-x (2016).

  32. Wasko, C. & Sharma, A. Quantile regression for investigating scaling of extreme precipitation with temperature. Wat. Resour. Res. 50, 3608–3614 (2014).

    Article  Google Scholar 

  33. Ban, N., Schmidli, J. & Schaer, C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys. Res. Lett. 42, 1165–1172 (2015).

    Article  Google Scholar 

  34. Chan, S. C. et al. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).

    Article  Google Scholar 

  35. Molnar, P., Fatichi, S., Gaál, L., Szolgay, J. & Burlando, P. Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci. 19, 1753–1766 (2015).

    Article  Google Scholar 

  36. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Y. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Article  Google Scholar 

  37. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article  Google Scholar 

  38. Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).

    Article  Google Scholar 

  39. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  40. Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

    Article  Google Scholar 

  41. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  42. Zhang, X. et al. WCRP Grand Challenge: Understanding and Predicting Weather and Climate Extremes (World Climate Research Programme, 2015); http://go.nature.com/2lPeg0H

    Google Scholar 

  43. Alexander, L. V., Zhang, X., Hegerl, G. C. & Seneviratne, S. I. Implementation Plan for WCRP Grand Challenge on Understanding and Predicting Weather and Climate Extremes (World Climate Research Programme, 2016); http://go.nature.com/2moUtH7

    Google Scholar 

  44. Hanel, M. & Buishand, T. A. On the value of hourly precipitation extremes in regional climate model simulations. J. Hydrol. 393, 265–273 (2010).

    Article  Google Scholar 

  45. Gregersen, I. B. et al. Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Climatic Change 118, 783–797 (2013).

    Article  Google Scholar 

  46. Ban, N., Schmidli, J. & Schaer, C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos. 119, 7889–7907 (2014).

    Article  Google Scholar 

  47. Scinocca, J. F. & McFarlane, N. A. The variability of modeled tropical precipitation. J. Atmos. Sci. 61, 1993–2015 (2004).

    Article  Google Scholar 

  48. Takayabu I. & Hibino, K. The skilful time scale of climate models. J. Meteorol. Soc. Japan 94A, 191–197 (2016).

    Article  Google Scholar 

  49. Kendon E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  50. Singh M. S. & O'Gorman, P. A. Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett. 41, 6037–6044 (2014).

    Article  Google Scholar 

  51. Hewitt, C. D. Ensembles-based predictions of climate changes and their impacts. Eos Trans. AGU 85, 566–566 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Fyfe and K. Anderson for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceived of and designed the study. G.L., H.W. and A.J.C. undertook the analyses and produced the figures. X.Z. and F.W.Z. wrote the paper. All co-authors helped edit the paper.

Corresponding author

Correspondence to Xuebin Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures and Tables (PDF 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zwiers, F., Li, G. et al. Complexity in estimating past and future extreme short-duration rainfall. Nature Geosci 10, 255–259 (2017). https://doi.org/10.1038/ngeo2911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing