Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reorganization of the North Atlantic Oscillation during early Holocene deglaciation

Abstract

The North Atlantic Oscillation is the dominant atmospheric pressure mode in the North Atlantic region and affects winter temperature and precipitation in the Mediterranean, northwest Europe, Greenland, and Asia1. The index1 that describes the sea-level pressure difference between Iceland and the Azores is correlated with a dipole precipitation pattern over northwest Europe and northwest Africa. How the North Atlantic Oscillation will develop as the Greenland ice sheet melts is unclear2. A potential past analogue is the early Holocene, during which melting ice sheets around the North Atlantic3,4 freshened surface waters, affecting the strength of the meridional overturning circulation5. Here we present a Holocene rainfall record from northwest Africa based on speleothem δ18O and compare it against a speleothem-based rainfall record from Europe6. The two records are positively correlated during the early Holocene, followed by a shift to an anti-correlation, similar to the modern record, during the mid-Holocene. On the basis of our simulations with an Earth system model, we suggest the shift to the anti-correlation reflects a large-scale atmospheric and oceanic reorganization in response to the demise of the Laurentide ice sheet and a strong reduction of meltwater flux to the North Atlantic, pointing to a potential sensitivity of the North Atlantic Oscillation to the melting of ice sheets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlations between the NAO index and winter climate parameters.
Figure 2: Comparison of rainfall variability between northwest Morocco and western Germany during the early-to-mid-Holocene.
Figure 3: Results of the COSMOS climate simulations.

Similar content being viewed by others

References

  1. Hurrell, J. W. Decadal trends in the North-Atlantic Oscillation—regional temperatures and precipitation. Science 269, 676–679 (1995).

    Article  Google Scholar 

  2. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  3. Carlson, A. E. et al. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nature Geosci. 1, 620–624 (2008).

    Article  Google Scholar 

  4. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  5. LeGrande, A. N. et al. Consistent simulation of multiple proxy responses to an abrupt climate change event. Proc. Natl Acad. Sci. USA 103, 837–842 (2006).

    Article  Google Scholar 

  6. Fohlmeister, J. et al. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Clim. Past 8, 1751–1764 (2012).

    Article  Google Scholar 

  7. Vicente Serrano, S. M. & Trigo, R. M. Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region Vol. 46 (Advances in Global Change Research, Springer, 2011).

    Book  Google Scholar 

  8. Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, 78–80 (2009).

    Article  Google Scholar 

  9. Olsen, J., Anderson, J. N. & Knudsen, M. F. Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geosci. 5, 808–812 (2012).

    Article  Google Scholar 

  10. Dong, B. W., Sutton, R. T. & Woollings, T. Changes of interannual NAO variability in response to greenhouse gases forcing. Clim. Dynam. 37, 1621–1641 (2011).

    Article  Google Scholar 

  11. Wang, Y. H., Magnusdottir, G., Stern, H., Tian, X. & Yu, Y. Decadal variability of the NAO: introducing an augmented NAO index. Geophys. Res. Lett. 39, L21702 (2012).

    Google Scholar 

  12. Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).

    Article  Google Scholar 

  13. Rimbu, N., Lohmann, G., Lorenz, S. J., Kim, J. H. & Schneider, R. R. Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean–atmosphere model experiments. Clim. Dynam. 23, 215–227 (2004).

    Article  Google Scholar 

  14. Wassenburg, J. A. et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: elemental and isotopic evidence. Geochim. Cosmochim. Acta 92, 23–47 (2012).

    Article  Google Scholar 

  15. deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    Article  Google Scholar 

  16. Jungclaus, J. H. et al. Climate and carbon-cycle variability over the last millennium. Clim. Past 6, 723–737 (2010).

    Article  Google Scholar 

  17. Wei, W. & Lohmann, G. Simulated Atlantic multidecadal oscillation during the Holocene. J. Clim. 25, 6989–7002 (2012).

    Article  Google Scholar 

  18. Czaja, A. & Frankignoul, C. Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett. 26, 2969–2972 (1999).

    Article  Google Scholar 

  19. Deser, C., Alexander, M. A., Xie, S. P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010).

    Article  Google Scholar 

  20. Delworth, T. L. & Mann, M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam. 16, 661–676 (2000).

    Article  Google Scholar 

  21. Knudsen, M. F., Seidenkrantz, M. S., Jacobsen, B. H. & Kuijpers, A. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Commun. 2, 178 (2011).

    Article  Google Scholar 

  22. Oglesby, R., Feng, S., Hu, Q. & Rowe, C. The role of the Atlantic Multidecadal Oscillation on medieval drought in North America: synthesizing results from proxy data and climate models. Glob. Planet. Change 84–85, 56–65 (2012).

    Article  Google Scholar 

  23. Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).

    Article  Google Scholar 

  24. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–643 (2014).

    Article  Google Scholar 

  25. Wassenburg, J. A. et al. Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic Oscillation during the Medieval Warm Period. Earth Planet. Sci. Lett. 375, 291–302 (2013).

    Article  Google Scholar 

  26. Proctor, C. J., Baker, A. & Barnes, W. L. A three thousand year record of North Atlantic climate. Clim. Dynam. 19, 449–454 (2002).

    Article  Google Scholar 

  27. Drysdale, R. et al. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34, 101–104 (2006).

    Article  Google Scholar 

  28. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  29. Kim, S. T., O’Neil, J. R., Hillaire-Marcel, C. & Mucci, A. Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 71, 4704–4715 (2007).

    Article  Google Scholar 

  30. Romanek, C. S., Grossman, E. L. & Morse, J. W. Carbon isotope fractionation in synthetic aragonite and calcite—effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56, 419–430 (1992).

    Article  Google Scholar 

  31. Finch, A. A., Shaw, P. A., Holmgren, K. & Lee-Thorp, J. Corroborated rainfall records from aragonitic stalagmites. Earth Planet. Sci. Lett. 215, 265–273 (2003).

    Article  Google Scholar 

  32. McMillan, E. A., Fairchild, I. J., Frisia, S., Borsato, A. & McDermott, F. Annual trace element cycles in calcite–aragonite speleothems: evidence of drought in the western Mediterranean 1200–1100 yr BP . J. Quat. Sci. 20, 423–433 (2005).

    Article  Google Scholar 

  33. Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 22, 112–121 (2007).

    Article  Google Scholar 

  34. Jochum, K. P. et al. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397–429 (2011).

    Article  Google Scholar 

  35. Fietzke, J., Liebetrau, V., Eisenhauer, A. & Dullo, C. Determination of uranium isotope ratios by multi-static MIC-ICP-MS: method and implementation for precise U- and Th-series isotope measurements. J. Anal. At. Spectrom. 20, 395–401 (2005).

    Article  Google Scholar 

  36. Scholz, D. & Hoffmann, D. L. StalAge—an algorithm designed for construction of speleothem age models. Quat. Geochronol. 6, 369–382 (2011).

    Article  Google Scholar 

  37. Fohlmeister, J. A statistical approach to construct composite climate records of dated archives. Quat. Geochronol. 14, 48–56 (2012).

    Article  Google Scholar 

  38. Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM5. Part 1: Model Description Vol. 131 (Max Planck Institute for Meteorology, 2003).

    Google Scholar 

  39. Raddatz, T. J. et al. Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim. Dynam. 29, 565–574 (2007).

    Article  Google Scholar 

  40. Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, L07405 (2009).

    Article  Google Scholar 

  41. Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. & Roske, F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model. 5, 91–127 (2003).

    Article  Google Scholar 

  42. Stepanek, C. & Lohmann, G. Modelling mid-Pliocene climate with COSMOS. Geosci. Model Dev. 5, 1221–1243 (2012).

    Article  Google Scholar 

  43. Knorr, G., Butzin, M., Micheels, A. & Lohmann, G. A warm Miocene climate at low atmospheric CO2 levels. Geophys. Res. Lett. 38, L20701 (2011).

    Article  Google Scholar 

  44. Wei, W., Lohmann, G. & Dima, M. Distinct modes of internal variability in the global meridional overturning circulation associated with the Southern Hemisphere westerly winds. J. Phys. Oceanogr. 42, 785–801 (2012).

    Article  Google Scholar 

  45. Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  Google Scholar 

  46. Indermuhle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999).

    Article  Google Scholar 

  47. Sowers, T., Alley, R. B. & Jubenville, J. Ice core records of atmospheric N2O covering the last 106,000 years. Science 301, 945–948 (2003).

    Article  Google Scholar 

  48. Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J. & Sucher, C. M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Glob. Biogeochem. Cycles 14, 559–572 (2000).

    Article  Google Scholar 

  49. Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50, RG4007 (2012).

    Article  Google Scholar 

  50. Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in subpolar North Atlantic (lat 40° to 65° N). Geol. Soc. Am. Bull. 88, 1813–1827 (1977).

    Article  Google Scholar 

  51. Dima, M. & Lohmann, G. A hemispheric mechanism for the Atlantic Multidecadal Oscillation. J. Clim. 20, 2706–2719 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG; project IM 44/1, and WA3532/1-1) and the Max Planck Society. We would like to thank W. Wei for providing model output and performing the CCA-analysis and acknowledge D. Fleitmann for fruitful discussions. The staffs in the isotope laboratories at Bochum and Mainz (U. Weis, B. Stoll, A. Niedermayr, D. Buhl, B. Gehnen, U. Schulte) are acknowledged for their help with sample preparation and measurements. In addition, T. Reinecke, the thin section lab at Bochum and our local speleo-guides E. H. El Mansouri and T. Echchibi are gratefully acknowledged. A. Fink (Institute for Geophysics and Meteorology, University of Cologne) is thanked for providing rainfall data from the weather station in Taza, Morocco.

Author information

Authors and Affiliations

Authors

Contributions

J.A.W. wrote the paper and prepared and performed the stable isotope and trace element analysis; J.A.W., S.D., A.I. and D.K.R., were involved in the study design; S.D., and G.L. analysed the climate modelling data; J.A.W. and D.S. were involved in the age–depth modelling; J.A.W., J.Fohlmeister and D.S. were involved in the speleothem data interpretation; S.D., G.L. and J.A.W. contributed to the climate discussion; J.Fietzke performed the 230Th/U dating of stalagmite GP2; J.Fohlmeister performed the tuning and correlation analysis; C.S. performed the δ18O analysis of the rainwater samples; K.P.J. provided support with trace element analysis; M.O.A. provided essential feedback to multiple draft versions of the manuscript; A.S. provided logistical support essential for the collection of stalagmite GP2. All authors discussed the results and provided comments on the manuscripts.

Corresponding author

Correspondence to Jasper A. Wassenburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 12159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wassenburg, J., Dietrich, S., Fietzke, J. et al. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation. Nature Geosci 9, 602–605 (2016). https://doi.org/10.1038/ngeo2767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing