Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A

Abstract

During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1,2,3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4,5,6,7. In particular, geophysical modelling studies constrained by tropical sea-level records1,8,9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11,12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of method used to estimate MWP-1A amplitude at Barbados using age and depth information from coral samples.
Figure 2: Relative sea-level reconstructions for the Sunda Shelf and model estimate of sea-level gradient across this region at the time of MWP-1A.
Figure 3: Posterior distribution of NAIS and AIS sea-level contributions conditioned on far-field rsl reconstructions.

Similar content being viewed by others

References

  1. Deschamps, P. et al. Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature 483, 559–564 (2012).

    Article  Google Scholar 

  2. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and last glacial maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    Article  Google Scholar 

  3. Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda shelf: A late-glacial sea-level record. Science 288, 1033–1035 (2000).

    Article  Google Scholar 

  4. Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Commun. 5, 5107 (2014).

    Article  Google Scholar 

  5. Menviel, L., Timmermann, A., Timm, O. E. & Mouchet, A. Deconstructing the Last Glacial termination: The role of millennial and orbital-scale forcings. Quat. Sci. Rev. 30, 1155–1172 (2011).

    Article  Google Scholar 

  6. Stouffer, R. J., Seidov, D. & Haupt, B. J. Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Clim. 20, 436–448 (2007).

    Article  Google Scholar 

  7. Weaver, A. J., Saenko, O. A., Clark, P. U. & Mitrovica, J. X. Meltwater pulse 1A from Antarctica as a trigger of the Bølling–Allerød warm interval. Science 299, 1709–1713 (2003).

    Article  Google Scholar 

  8. Clark, P. U., Mitrovica, J. X., Milne, G. A. & Tamisiea, M. E. Sea-level fingerprinting as a direct test for the source of global meltwater pulse 1A. Science 295, 2438–2441 (2002).

    Google Scholar 

  9. Bassett, S. E., Milne, G. A., Mitrovica, J. X. & Clark, P. U. Ice sheet and solid Earth influences on far-field sea-level histories. Science 309, 925–928 (2005).

    Article  Google Scholar 

  10. Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    Article  Google Scholar 

  11. Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50, RG4007 (2012).

    Article  Google Scholar 

  12. Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modelling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).

    Article  Google Scholar 

  13. Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. & Milne, G. A. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001).

    Article  Google Scholar 

  14. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  15. Bard, E., Hamelin, B. & Fairbanks, R. G. U–Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years. Nature 346, 456–458 (1990).

    Article  Google Scholar 

  16. Neumann, A. C. & McIntyre, I. G. Proc. 5th Int. Coral Reef Cong. Tahiti Vol. 3, 105–110 (WorldFish, 1985).

    Google Scholar 

  17. Lambeck, K., Yokoyama, Y. & Purcell, T. Into and out of the Last Glacial Maximum: Sea-level change during Oxygen Isotope Stages 3 and 2. Quat. Sci. Rev. 21, 343–360 (2002).

    Article  Google Scholar 

  18. Blanchon, P. & Blakeway, D. Are catch-up reefs and artifact of coring? Sedimentology 50, 1271–1282 (2003).

    Article  Google Scholar 

  19. Briggs, R. D., Pollard, D. & Tarasov, L. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quat. Sci. Rev. 103, 91–115 (2014).

    Article  Google Scholar 

  20. Gomez, N., Pollard, D. & Mitrovica, J. X. A 3-D coupled ice sheet-sea level model applied to Antarctica through the last 40 ky. Earth Planet. Sci. Lett. 384, 88–99 (2013).

    Article  Google Scholar 

  21. Whitehouse, P. L., Bentley, M. J. & Le Brocq, A. M. A deglacial model for Antarctica: Geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012).

    Article  Google Scholar 

  22. Carlson, A. E. et al. Modeling the surface mass-balance response of the Laurentide Ice Sheet to Bølling warming and its contribution to Meltwater Pulse 1A. Earth Planet. Sci. Lett. 315–316, 24–29 (2012).

    Article  Google Scholar 

  23. Gregoire, L. J., Payne, A. J. & Valdes, P. J. Deglacial rapid sea-level rises caused by ice-sheet saddle collapses. Nature 487, 219–222 (2012).

    Article  Google Scholar 

  24. Lambeck, K., Smither, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int. 134, 102–144 (1998).

    Article  Google Scholar 

  25. Simpson, M. J. R., Milne, G. A., Huybrechts, P. & Long, A. J. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quat. Sci. Rev. 28, 1631–1657 (2009).

    Article  Google Scholar 

  26. Gomez, N., Gregoire, L. J., Mitrovica, J. X. & Payne, A. J. Laurentide-Cordilleran ice sheet saddle collapse as a contribution to meltwater pulse 1A. Geophys. Res. Lett. 42, 3954–3962 (2015).

    Article  Google Scholar 

  27. Farrell, W. E. & Clark, J. A. On postglacial sea-level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

    Article  Google Scholar 

  28. Mitrovica, J. X. & Milne, G. A. On post-glacial sea level-I. General theory. Geophys. J. Int. 154, 253–267 (2003).

    Article  Google Scholar 

  29. Kendall, R., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level-II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).

    Article  Google Scholar 

  30. Sabadini, R., Yuen, D. A. & Boschi, E. Polar wander and the forced responses of a rotating, multi-layered, viscoelastic planet. J. Geophys. Res. 87, 2885–2903 (1982).

    Article  Google Scholar 

  31. Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth. Geophys. J. Int. 133, 1–19 (1998).

    Article  Google Scholar 

  32. Mitrovica, J. X., Wahr, J., Matsuyama, I. & Paulson, A. The rotational stability of an ice-age Earth. Geophys. J. Int. 161, 491–506 (2005).

    Article  Google Scholar 

  33. Mitrovica, J. X. et al. On the robustness of predictions of sea level fingerprints. Geophys. J. Int. 187, 729–742 (2011).

    Article  Google Scholar 

  34. Dziewonski, A. M. & Anderson, D. L. Preliminary Reference Earth Model (PREM). Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  35. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  36. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  37. Clark, J. A., Farrell, W. E. & Peltier, W. R. Global changes in postglacial sea level: A numerical calculation. Quat. Res. 9, 265–287 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

J.L. and G.A.M. are supported by the Natural Sciences and Engineering Research Council of Canada. G.A.M. is also supported by the Canada Research Chairs programme. R.E.K. acknowledges support from the National Science Foundation (NSF) of the United States (ARC 1203415). P.U.C. acknowledges support from the NSF Antarctic Glaciology Program (ANT1260719) and the NSF Marine Geology and Geophysics Program (OCE1335197). We thank J. Mitrovica for providing information that contributed to the work presented in this paper. This work benefited from discussions at several PALeo constraints on SEA level rise (PALSEA) workshops.

Author information

Authors and Affiliations

Authors

Contributions

J.L. performed the research and led the writing of the manuscript. G.A.M., R.E.K., P.U.C. and I.S. advised J.L. in performing the research and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Glenn A. Milne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Milne, G., Kopp, R. et al. Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A. Nature Geosci 9, 130–134 (2016). https://doi.org/10.1038/ngeo2616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2616

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene