Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils

Abstract

Nitrogen cycling is an important aspect of forest ecosystem functioning. Pristine temperate rainforests have been shown to produce large amounts of bioavailable nitrogen, but despite high nitrogen turnover rates, loss of bioavailable nitrogen is minimal in these ecosystems. This tight nitrogen coupling is achieved through fierce competition for bioavailable nitrogen by abiotic processes, soil microbes and plant roots, all of which transfer bioavailable nitrogen to stable nitrogen sinks, such as soil organic matter and above-ground forest vegetation. Here, we use a combination of in situ 15N isotope dilution and 15N tracer techniques in volcanic soils of a temperate evergreen rainforest in southern Chile to further unravel retention mechanisms for bioavailable nitrogen. We find three processes that contribute significantly to nitrogen bioavailability in rainforest soils: heterotrophic nitrate production, nitrate turnover into ammonium and into a pool of dissolved organic nitrogen that is not prone to leaching loss, and finally, the decoupling of dissolved inorganic nitrogen turnover and leaching losses of dissolved organic nitrogen. Identification of these biogeochemical processes helps explain the retention of bioavailable nitrogen in pristine temperate rainforests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual model for the nitrogen (N) cycle in volcanic soils of temperate rainforests (modified from Schimel and Bennett7).

Similar content being viewed by others

References

  1. Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: A hypothesis. Bioscience 25, 376–381 (1975).

    Article  Google Scholar 

  2. Hedin, L. O., Armesto, J. J. & Johnson, A. H. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76, 493–509 (1995).

    Article  Google Scholar 

  3. Perakis, S. S. & Hedin, L. O. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82, 2245–2260 (2001).

    Article  Google Scholar 

  4. Perakis, S. S. & Hedin, L. O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415, 416–419 (2002).

    Article  Google Scholar 

  5. Perakis, S. S., Compton, J. E. & Hedin, L. O. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile. Ecology 86, 95–105 (2005).

    Article  Google Scholar 

  6. Huygens, D. et al. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem. Soil Biol. Biochem. 39, 2448–2458 (2007).

    Article  Google Scholar 

  7. Schimel, J. P. & Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85, 591–602 (2004).

    Article  Google Scholar 

  8. Wood, P. M. Autotrophic and heterotrophic mechanisms for ammonia oxidation. Soil Use Manag. 6, 78–79 (1990).

    Article  Google Scholar 

  9. De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: Micro-organisms and mechanisms. Soil Biol. Biochem. 33, 853–866 (2001).

    Article  Google Scholar 

  10. Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecol. Monogr. 75, 139–157 (2005).

    Article  Google Scholar 

  11. Killham, K. Heterotrophic nitrification. Spec. Publ. Soc. Gen. Microb. 20, 117–126 (1986).

    Google Scholar 

  12. Gallet, C. & Lebreton, P. Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biol. Biochem. 27, 157–165 (1995).

    Article  Google Scholar 

  13. Aerts, R. The advantages of being evergreen. Trends Ecol. Evol. 10, 402–407 (1995).

    Article  Google Scholar 

  14. Bending, G. D. & Read, D. J. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 101, 1348–1354 (1997).

    Article  Google Scholar 

  15. Stark, J. M. & Hart, S. C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385, 61–64 (1997).

    Article  Google Scholar 

  16. Silver, W. L., Herman, D. J. & Firestone, M. K. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82, 2410–2416 (2001).

    Article  Google Scholar 

  17. Davidson, E. A., Chorover, J. & Dail, D. B. A mechanism of abiotic immobilization of nitrate in forest ecosystems: The ferrous wheel hypothesis. Glob. Change Biol. 9, 228–236 (2003).

    Article  Google Scholar 

  18. Brookshire, E. N. J., Valett, H. M., Thomas, S. A. & Webster, J. R. Atmospheric N deposition increases organic N loss from temperate forests. Ecosystems 10, 252–262 (2007).

    Article  Google Scholar 

  19. Weathers, K. C. & Likens, G. E. Clouds in southern Chile: An important source of nitrogen to nitrogen-limited ecosystems? Environ. Sci. Technol. 31, 210–213 (1997).

    Article  Google Scholar 

  20. Guggenberger, G. & Kaiser, K. Dissolved organic matter in soil: Challenging the paradigm of sorptive preservation. Geoderma 113, 293–310 (2003).

    Article  Google Scholar 

  21. Qualls, R. G. & Haines, B. L. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci. Soc. Am. J. 56, 578–586 (1992).

    Article  Google Scholar 

  22. Vitousek, P. M. Nutrient cycling and nutrient use efficiency. Am. Nature 199, 533–572 (1982).

    Google Scholar 

  23. Pett-Ridge, J., Silver, W. L. & Firestone, M. K. Redox fluctuations frame microbial community impacts on N-cycling rates in a humid tropical forest soil. Biogeochemistry 81, 95–110 (2006).

    Article  Google Scholar 

  24. Burton, J., Chen, C. R., Xu, Z. H. & Ghadiri, H. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biol. Biochem. 39, 426–433 (2007).

    Article  Google Scholar 

  25. Pedersen, H., Dunkin, K. A. & Firestone, M. K. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44, 135–150 (1999).

    Google Scholar 

  26. Kaiser, K., Guggenberger, G., Haumaier, L. & Zech, W. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry 55, 103–143 (2001).

    Article  Google Scholar 

  27. Kalbitz, K., Kaiser, K., Bargholz, J. & Dardenne, P. Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur. J. Soil Sci. 57, 504–516 (2006).

    Article  Google Scholar 

  28. Qualls, R. G. Comparison of the behavior of soluble organic and inorganic nutrients in forest soils. For. Ecol. Manag. 138, 29–50 (2000).

    Article  Google Scholar 

  29. Strahm, B. D. & Harrison, R. B. Mineral and organic matter controls on the sorption of macronutrient anions in variable-charge soils. Soil Sci. Soc. Am. J. 71, 1926–1933 (2007).

    Article  Google Scholar 

  30. Huygens, D., Boeckx, P., Van Cleemput, O., Oyarzun, C. E. & Godoy, R. Aggregate and soil organic carbon dynamics in south Chilean Andisols. Biogeosciences 2, 159–174 (2005).

    Article  Google Scholar 

  31. Bengtsson, G. & Bergwall, C. Fate of 15N labelled nitrate and ammonium in a fertilized forest soil. Soil Biol. Biochem. 32, 545–557 (2000).

    Article  Google Scholar 

  32. Silver, W. L., Thompson, A. W., Reich, A., Ewel, J. J. & Firestone, M. K. Nitrogen cycling in tropical plantation forests: Potential controls on nitrogen retention. Ecol. Appl. 15, 1604–1614 (2005).

    Article  Google Scholar 

  33. Dail, D. B., Davidson, E. A. & Chorover, J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54, 131–146 (2001).

    Article  Google Scholar 

  34. Aber, J. D. et al. Nitrogen saturation in temperate forest ecosystems: Hypothesis revisited. Bioscience 48, 921–934 (1998).

    Article  Google Scholar 

  35. Colman, B. P., Fierer, N. & Schimel, J. P. Abiotic nitrate incorporation in soil: Is it real? Biogeochemistry 84, 161–169 (2007).

    Article  Google Scholar 

  36. Seitzinger, S. P. & Sanders, R. W. Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Mar. Ecol. - Prog. Ser. 159, 1–12 (1997).

    Article  Google Scholar 

  37. Oyarzún, C. E., Godoy, R., De Schrijver, A., Staelens, J. & Lust, N. Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry 71, 107–123 (2004).

    Article  Google Scholar 

  38. Jardine, P. M., Weber, N. L. & McCarthy, J. F. Mechanisms of dissolved organic-carbon adsorption on soil. Soil Sci. Soc. Am. J. 53, 1378–1385 (1989).

    Article  Google Scholar 

  39. Kaiser, K. & Zech, W. Release of natural organic matter sorbed to oxides and a subsoil. Soil Sci. Soc. Am. J. 63, 1157–1166 (1999).

    Article  Google Scholar 

  40. Qualls, R. G., Haines, B. L. & Swank, W. T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72, 254–266 (1991).

    Article  Google Scholar 

  41. IUSS Working Group WRB. World Soil Resources Report No. 103, (2006).

  42. Andersen, M. K. & Jensen, L. S. Low soil temperature effects on short-term gross N mineralisation-immobilisation turnover after incorporation of a green manure. Soil Biol. Biochem. 33, 511–521 (2001).

    Article  Google Scholar 

  43. Davidson, E. A., Hart, S. C., Shanks, C. A. & Firestone, M. K. Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42, 335–349 (1991).

    Article  Google Scholar 

  44. Leenheer, J. A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewater. Environ. Sci. Technol. 15, 578–587 (1981).

    Article  Google Scholar 

  45. Vandenbruwane, J., De Neve, S., Qualls, R. G., Salomez, J. & Hofman, G. Optimization of dissolved organic nitrogen (DON) measurements in aqueous samples with high inorganic nitrogen concentrations. Sci. Total Environ. 386, 103–113 (2007).

    Article  Google Scholar 

  46. Mulvaney, R. L. in Methods of Soil Analysis (ed. Sparks, D. L.) 1123–1184 (ASA and SSSA, Madison, 1996).

    Google Scholar 

  47. Hauck, R. D. in Methods of Soil Analysis (eds Page, A. L., Miller, R. A. & Keeney, D. R.) 735–779 (ASA and SSSA, Madison, 1982).

    Google Scholar 

  48. Stevens, R. J. & Laughlin, R. J. Determining 15N in nitrite or nitrate by producing nitrous oxide. Soil Sci. Soc. Am. J. 58, 1108–1116 (1994).

    Article  Google Scholar 

  49. Huygens, D. et al. On-line technique to determine the isotopic composition of total dissolved nitrogen. Anal. Chem. 79, 8644–8649 (2007).

    Article  Google Scholar 

  50. Barraclough, D. & Puri, G. The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biol. Biochem. 27, 17–22 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fund for Scientific Research - Flanders (Belgium) (FWO, G.0426.04) and a Bilateral Scientific and Technological Cooperation between Flanders and Chile (BOF, UGent). R.G. would like to thank the National Commission for Scientific and Technological Research - Chile (FONDECYT). Support during field campaigns was provided by Y. Rivas, G. Guevara, P. Etcheverría, Y. Ugarte, E. Padilla, L. Almonacid and J. Peters. We are grateful to the CONAF, especially to N. Pacheco, for supporting our research. We acknowledge E. Gillis, K. Van Nieuland and J. Vermeulen for isotope analyses.

Author information

Authors and Affiliations

Authors

Contributions

All authors worked out the study aims, discussed the results and edited/commented on the manuscript; D.H., P.B., L.P., C.O. and R.G. participated in field sampling campaigns; D.H., P.B. and P.T. prepared experimental set-up and scientific protocols. D.H. wrote the manuscript, analysed water samples and carried out data analysis; D.H., P.B. and R.G. supervised the project; P.T. provided expertise on 15N field work and techniques during a scientific exchange programme of D.H.

Corresponding author

Correspondence to Dries Huygens.

Supplementary information

Supplementary Information

Supplementary table S1 (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huygens, D., Boeckx, P., Templer, P. et al. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geosci 1, 543–548 (2008). https://doi.org/10.1038/ngeo252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing