Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impact vaporization of planetesimal cores in the late stages of planet formation

Abstract

Differentiated planetesimals delivered iron-rich material to the Earth and Moon in high-velocity collisions at the end stages of accretion. The physical process of accreting this late material has implications for the geochemical evolution of the Earth–Moon system and the timing of Earth’s core formation1,2,3. However, the fraction of a planetesimal’s iron core that is vaporized by an impact is not well constrained as a result of iron’s poorly understood equation of state. Here we determine the entropy in the shock state of iron using a recently developed shock-and-release experimental technique implemented at the Sandia National Laboratory Z-Machine. We find that the shock pressure required to vaporize iron is 507 (+65, −85) GPa, which is lower than the previous theoretical estimate4 (887 GPa) and readily achieved by the high velocity impacts at the end stages of accretion. We suggest that impact vaporization of planetesimal cores dispersed iron over the surface of the growing Earth and enhanced chemical equilibration with the mantle. In addition, the comparatively low abundance of highly siderophile elements in the lunar mantle and crust5,6,7,8 can be explained by the retention of a smaller fraction of vaporized planetesimal iron on the Moon, as compared with Earth, due to the Moon’s lower escape velocity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liquid densities as a function of shock pressure.
Figure 2: Entropy on the iron Hugoniot.
Figure 3: Iron vaporization fraction during planet formation.

Similar content being viewed by others

References

  1. Rubie, D. C., Nimmo, F. & Melosh, H. J. Treatise on Geophysics Vol. 9, 51–90 (Elsevier, 2007).

    Book  Google Scholar 

  2. Kleine, T. et al. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    Article  Google Scholar 

  3. Day, J. M. D., Walker, R. J., Qin, L. & Rumble, D. Late accretion as a natural consequence of planetary growth. Nature Geosci. 5, 614–618 (2012).

    Article  Google Scholar 

  4. Pierazzo, E., Vickery, A. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997).

    Article  Google Scholar 

  5. Walker, R. J., Horan, M. F., Shearer, C. K. & Papike, J. J. Depletion of highly siderophile elements in the lunar mantle: Evidence for prolonged late accretion. Earth Planet. Sci. Lett. 224, 399–413 (2004).

    Article  Google Scholar 

  6. Day, J. M. D., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation on the Earth–Moon system. Science 315, 217–219 (2007).

    Article  Google Scholar 

  7. Day, J. M. D., Walker, R. J., Odette, J. B. & Puchtel, I. S. Osmium isotope and highly siderophile element systematics of the lunar crust. Earth Planet. Sci. Lett. 289, 595–605 (2010).

    Article  Google Scholar 

  8. Schlichting, H. E., Warren, P. H. & Yin, Q. Z. The last stages of terrestrial planet formation: Dynamical friction and the late veneer. Astrophys. J. 752, 8 (2012).

    Article  Google Scholar 

  9. Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003).

    Article  Google Scholar 

  10. Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article  Google Scholar 

  11. Cuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  12. Dahl, T. W. & Stevenson, D. J. Turbulent mixing of metal and silicate during planet accretion? and interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010).

    Article  Google Scholar 

  13. Walker, R. J. Highly siderophile elements in the Earth, Moon, and Mars: Update and implications for planetary accretion and differentiation. Chem. Erde-Geochem. 69, 101–125 (2009).

    Article  Google Scholar 

  14. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  Google Scholar 

  15. O’Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).

    Article  Google Scholar 

  16. Raymond, S. N., O’Brien, D. P., Morbidelli, A. & Kaib, N. A. Building the terrestrial planets: Constrained accretion in the inner solar system. Icarus 203, 644–662 (2009).

    Article  Google Scholar 

  17. Stewart, S. T. & Leinhardt, Z. M. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J. 751, 32 (2012).

    Article  Google Scholar 

  18. Ahrens, T. J. & O’Keefe, J. D. Shock melting and vaporization of lunar rocks and minerals. Moon 4, 214–249 (1972).

    Article  Google Scholar 

  19. Kraus, R. G. et al. Shock vaporization of silica and the thermodynamics of planetary impact events. J. Geophys. Res. 117, E09009 (2012).

    Article  Google Scholar 

  20. Nellis, W. J. & Yoo, C. S. Issues concerning shock temperature measurements of iron and other metals. J. Geophys. Res. 95, 21749–21752 (1990).

    Article  Google Scholar 

  21. Hixson, R. S., Winkler, M. A. & Hodgdon, M. L. Sound speed and thermophysical properties of liquid iron and nickel. Phys. Rev. B 42, 6485–6491 (1990).

    Article  Google Scholar 

  22. Beutl, M., Pottlacher, G. & Jager, H. Thermophysical properties of liquid iron. Int. J. Thermophys. 15, 1323–1331 (1994).

    Article  Google Scholar 

  23. Kerley, G. I. Multiphase Equation of State for Iron. Tech. Rep. SAND93-0027 (Sandia National Laboratories, 1993)

  24. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth’s inner core boundary based on fast x-ray diffraction. Science 340, 464–466 (2013).

    Article  Google Scholar 

  25. Thompson, S. L. & Lausen, H. S. Improvements in the CHARTD Radiation-Hydrodynamic Code III. Revised Analytic Equation of State. Tech. Rep. SC-RR-710714 (Sandia National Laboratories, 1972)

  26. Johnson, B. & Melosh, H. Formation of spherules in impact produced vapor plumes. Icarus 217, 416–430 (2012).

    Article  Google Scholar 

  27. Harper, C. L. & Jacobsen, S. B. Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60, 1131–1153 (1996).

    Article  Google Scholar 

  28. Jacobsen, S. B. & Harper, C. L. in Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S.) 47–74 (American Geophysical Union, 1996).

    Google Scholar 

  29. Savage, M. E. et al. 2007 IEEE Pulsed Power Conference Vol. 2, 979–984 (IEEE, 2007).

    Book  Google Scholar 

  30. Brown, J. M., Fritz, J. N. & Hixson, R. S. Hugoniot data for iron. J. Appl. Phys. 88, 5496–5498 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000. This work was conducted under the Sandia Z Fundamental Science Program and supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001804. This work was improved by helpful discussions with R. Walker, D. Flicker, D. Swift, M. Knudson and M. Desjarlais. We thank S. Raymond, K. Walsh and D. O’Brien for the impact data from their N-body simulations. Iron samples were provided by B. Jensen of Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

R.G.K. conceived the experimental technique. R.G.K., S.T.S., S.B.J. and T.R.M. prepared the proposal for experimental time. S.R., R.W.L. and R.G.K. designed and conducted the experiments. R.G.K. analysed the data. R.G.K. and S.T.S. wrote the paper and all authors provided comments on the manuscript.

Corresponding author

Correspondence to Richard G. Kraus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, R., Root, S., Lemke, R. et al. Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geosci 8, 269–272 (2015). https://doi.org/10.1038/ngeo2369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing