Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago

This article has been updated

Abstract

Earth’s interannual climate variability is dominated by El Niño/Southern Oscillation (ENSO). Palaeoclimate records indicate a lower ENSO variance during the middle Holocene compared with today1,2,3,4,5,6; however, model simulations have not reproduced the full magnitude of the changes7,8,9,10, and whether external forcing drives large intrinsic ENSO variability11 is therefore a matter of considerable debate. Here we present a 175-year-long, monthly resolved oxygen isotope record, obtained from a Porites coral microatoll located on Kiritimati (Christmas) Island, in the NINO3.4 region of the central equatorial Pacific. Our quantitative record of ENSO variability about 4,300 years ago shows that ENSO variance was persistently reduced by 79%, compared with today, and it exhibits a dominant annual cycle. Season-specific analysis shows that El Niño events were damped during their September–November growth phase, and delayed relative to the climatological year. We suggest that the higher boreal summer insolation at the time strengthened the tropical Pacific zonal winds as well as the gradients in sea surface temperature, and thereby led to an enhanced annual cycle and suppressed ENSO. As the weak ENSO is subject to interdecadal amplitude modulation, we conclude that amplitude modulation is likely to remain robust under altered climates. Our findings show that ENSO is capable of responding to external forcing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of Kiritimati coral δ18O and instrumental SST.
Figure 2: The interannual and seasonal evolution of ENSO.
Figure 3: Annual cycle of the Kiritimati SST, modern coral δ18O and 4.3 kyr BP coral δ18O records.
Figure 4: Interdecadal modulation of ENSO amplitude.

Similar content being viewed by others

Change history

  • 06 September 2013

    In the version of this Letter originally published online, the published online date should have read '5 September 2013'. This has been corrected in the PDF and HTML versions of the Letter.

References

  1. Tudhope, A. W. et al. Variability in the El Niño-Southern Oscillation through a glacial–interglacial cycle. Science 291, 1511–1517 (2001).

    Article  Google Scholar 

  2. Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Article  Google Scholar 

  3. Woodroffe, C. D., Beech, M. R. & Gagan, M. K. Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls. Geophys. Res. Lett. 30, 1358 (2003).

    Article  Google Scholar 

  4. McGregor, H. V. & Gagan, M. K. Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño-Southern Oscillation. Geophys. Res. Lett. 31, L11204 (2004).

    Google Scholar 

  5. Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M. & Steinitz-Kannan, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27, 1166–1180 (2008).

    Article  Google Scholar 

  6. Koutavas, A. & Joanides, S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, PA4208 (2012).

    Article  Google Scholar 

  7. Clement, A. C., Seager, R. & Cane, M. A. Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15, 731–737 (2000).

    Article  Google Scholar 

  8. Liu, Z., Kutzbach, J. & Wu, L. Modeling climate shift of El Nino variability in the Holocene. Geophys. Res. Lett. 27, 2265–2268 (2000).

    Article  Google Scholar 

  9. Zheng, W., Braconnot, P., Guilyardi, E., Merkel, U. & Yu, Y. ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Clim. Dyn. 30, 745–762 (2008).

    Article  Google Scholar 

  10. Brown, J. R., Tudhope, A. W., Collins, M. & McGregor, H. V. Mid-Holocene ENSO: Issues in quantitative model-proxy data comparisons. Paleoceanography 23, PA3202 (2008).

    Article  Google Scholar 

  11. Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Article  Google Scholar 

  12. Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weath. Rev. 115, 1606–1626 (1987).

    Article  Google Scholar 

  13. Cane, M. A. The evolution of El Niño, past and future. Earth Planet. Sci. Lett. 230, 227–240 (2005).

    Article  Google Scholar 

  14. Guilyardi, E. et al. Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–340 (2009).

    Article  Google Scholar 

  15. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).

    Article  Google Scholar 

  16. Yeh, S-W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009).

    Article  Google Scholar 

  17. Cole, J. E., Fairbanks, R. G. & Shen, G. T. Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral. Science 260, 1790–1793 (1993).

    Article  Google Scholar 

  18. Cobb, K. M., Charles, C. D., Cheng, H. & Edwards, R. L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, 271–276 (2003).

    Article  Google Scholar 

  19. Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nature Clim. Change 1, 114–118 (2011).

    Article  Google Scholar 

  20. Braconnot, P., Luan, Y., Brewer, S. & Zheng, W. Impact of Earth’s orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics. Clim. Dyn. 38, 1081–1092 (2012).

    Article  Google Scholar 

  21. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article  Google Scholar 

  22. Evans, M. N., Fairbanks, R. G. & Rubenstone, J. L. A proxy index of ENSO teleconnections. Nature 394, 732–733 (1998).

    Article  Google Scholar 

  23. Torrence, C. & Webster, P. J. The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. R. Meteorol. Soc. 124, 1985–2004 (1998).

    Google Scholar 

  24. McGregor, H. V., Fischer, M., Gagan, M. K., Fink, D. & Woodroffe, C. D. Environmental control of the oxygen isotope composition of Porites coral microatolls. Geochim. Cosmochim. Acta 75, 3930–3944 (2011).

    Article  Google Scholar 

  25. Li, T. & Philander, S. G. H. On the annual cycle of the eastern equatorial Pacific. J. Clim. 9, 2986–2998 (1996).

    Article  Google Scholar 

  26. Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Röhl, U. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, 1304–1308 (2001).

    Article  Google Scholar 

  27. Carré, M. et al. Mid-Holocene mean climate in the south eastern Pacific and its influence on South America. Quat. Int. 253, 55–66 (2012).

    Article  Google Scholar 

  28. Timmermann, A., Lorenz, S. J., An, S-I., Clement, A. & Xie, S-P. The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Clim. 20, 4147–4159 (2007).

    Article  Google Scholar 

  29. Fowler, A. M. et al. Multi-centennial tree-ring record of ENSO-related activity in New Zealand. Nature Clim. Change 2, 172–176 (2012).

    Article  Google Scholar 

  30. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Bryden, T. Schambron and A. T. Berenti for support with fieldwork carried out under Permit from the Environment and Conservation Division, Ministry of Environment, Lands and Agriculture Development of the Republic of Kiribati. D. Zeko, J. Gaudry, A. Harbeck and S. Maher assisted with sample preparation. J. Abrantes is thanked for XRD analyses and thin-section preparation. J. Cowley, H. Scott-Gagan, J. Cali, A. McGregor, W. Lees and S. Sosdian assisted with oxygen isotope analysis. M. Dore, L. Glasbergen and H. Schofield assisted with Sr/Ca analysis. A. Wittenberg, J. Smerdon and R. Seager assisted with GFDL CM2.1 model output. M. Evans, N. J. Abram and T. J. Williams are thanked for thoughtful comments on the manuscript. We acknowledge the support of J-x. Zhao and funding from Australian Research Council (ARC) LIEF grant LE0989067 for MC-ICPMS U–Th dating. This work was supported by ARC Discovery Projects grants DP0664313 (C.D.W.), DP1092945 (H.V.M.) and DP063227 (M.K.G.), AINSE Awards AINGRA10077 (H.V.M.) and AINGRA09021 (H.V.M.), ANSTO ‘Cosmogenic climate Archives of the Southern Hemisphere’ and ‘Isotopes in Climate Change and Atmospheric Systems’ projects, and the National Computational Merit Allocation Scheme (S.J.P.). H.V.M. is supported by an AINSE Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.V.M, C.D.W. and D.F. conducted fieldwork, sampled fossil coral XM35 and designed the study. H.V.M. oversaw all analytical aspects of the study, with contributions to δ18O analysis from M.K.G., age dating from C.D.W. and D.F., and Sr/Ca analysis from H.W. S.J.P. provided climate model output and analysis and assisted with the coral age model. M.J.F. and H.V.M. conducted the statistical analysis. H.V.M. and M.K.G. wrote the manuscript with assistance from M.J.F. All authors discussed the results, interpretations and contributed to the final version of manuscript.

Corresponding author

Correspondence to H. V. McGregor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5020 kb)

Supplementary Information

Supplementary Information (XLSX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGregor, H., Fischer, M., Gagan, M. et al. A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago. Nature Geosci 6, 949–953 (2013). https://doi.org/10.1038/ngeo1936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing