Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites

A Corrigendum to this article was published on 29 April 2013

This article has been updated

Abstract

The Moon experienced an intense period of impacts about 4 Gyr ago. This cataclysm is thought to have affected the entire inner Solar System and has been constrained by the radiometric dating of lunar samples: 40Ar–39Ar ages reflect the heating and degassing of target rocks by large basin-forming impacts on the Moon. Radiometric dating of meteorites from Vesta and the H-chondrite parent body also shows numerous 40Ar–39Ar ages between 3.4 and 4.1 Gyr ago, despite a different dynamical context, where impacts typically occur at velocities too low to reset geochronometers. Here we interpret the 40Ar–39Ar age record in meteorites to reflect unusually high impact velocities exceeding 10 km s−1. Compared with typical impact velocities for main-belt asteroids of about 5 km s−1, these collisions would produce 100–1,000 times more highly heated material by volume. We propose that the 40Ar–39Ar ages between 3.4 and 4.1 Gyr ago from Vesta, the H-chondrite parent body and the Moon record impacts from numerous main-belt asteroids that were driven onto high-velocity and highly eccentric orbits by the effects of the late migration of the giant planets. We suggest that the bombardment persisted for many hundreds of millions of years and affected most inner Solar System bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distributions of impact-reset 40Ar–39Ar ages of meteorites and lunar samples.
Figure 2: Hydrocode-based computations of impact heating for various collision velocities.
Figure 3: The asteroid belt before and after late giant planet migration.
Figure 4: The impact flux and impact heating curve on Vesta.

Similar content being viewed by others

Change history

  • 24 March 2013

    In the print version of this Article, in the 7th author affiliation the US state is incorrect; it should read 'Arizona'. The 'accepted' date of the Article is also incorrect; it should read 8 February 2013. These errors are correct in the HTML and PDF versions.

References

  1. Kring, D. A. & Cohen, B. A. Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Gyr. J. Geophys. Res. 107, 4–1 (2002).

    Google Scholar 

  2. Bogard, D. D. K-Ar ages of meteorites: clues to parent-body thermal histories. Chem. Erde Geochem. 71, 207–226 (2011).

    Article  Google Scholar 

  3. Swindle, T. D. et al. in 40Ar–30Ar Dating: From Geochronology to Thermochronology, from Archaeology to Planetary Sciences (eds Jourdan, F., Mark, D. & Verati, C.) (The Geological Society, in the press, 2012).

  4. Cohen, B. A., Swindle, T. D. & Kring, D. A. Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754–1756 (2000).

    Article  Google Scholar 

  5. Bogard, D. D. Impact ages of meteorites: A synthesis. Meteoritics 30, 244–268 (1995).

    Article  Google Scholar 

  6. Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974).

    Article  Google Scholar 

  7. Turner, G., Cadogan, P. H. & Yonge, C. J. Proc. Fourth Lunar Sci. Conf. 1889–1914 (1973).

    Google Scholar 

  8. Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner Solar System. Space Sci. Rev. 96, 9–54 (2001).

    Article  Google Scholar 

  9. Grange, M. L., Nemchin, A. A., Timms, N., Pidgeon, R. T. & Meyer, C. Complex magmatic and impact history before 4.1 Gyr recorded in zircon from Apollo 17 South Massif aphanitic breccia 73235. Geochim. Cosmochim. Acta 75, 2213–2232 (2011).

    Article  Google Scholar 

  10. Norman, M. D., Duncan, R. A. & Huard, J. J. Imbrium provenance for the Apollo 16 Descartes terrain: argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim. Cosmochim. Acta 74, 763–783 (2010).

    Article  Google Scholar 

  11. Neukum, G. & Ivanov, B. A. in Hazards Due to Comets and Asteroids (eds Gehrels, Tom, Matthews, M. S. & Schumann, A.) (Space Science Series, Univ. Arizona Press, p. 359 (1994).

  12. Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).

    Article  Google Scholar 

  13. Bottke, W. F., Levison, H. F., Nesvorny, D. & Dones, L. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007).

    Article  Google Scholar 

  14. Chapman, C. R., Cohen, B. A. & Grinspoon, D. H. What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189, 233–245 (2007).

    Article  Google Scholar 

  15. Marchi, S., Bottke, W. B., Kring, D. A. & Morbidelli, A. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325–326, 27–38 (2012).

    Article  Google Scholar 

  16. Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012).

    Article  Google Scholar 

  17. Consolmagno, G. Y. & Drake, M. J Composition and evolution of the eucrite parent body- Evidence from rare earth elements. Geochim Cosmochim. Acta 41, 1271–1282 (1977).

    Article  Google Scholar 

  18. McSween, H. Y. et al. HED meteorites and their relationship to the geology of vesta and the dawn mission. Space Sci. Rev. 163, 141–174 (2011).

    Article  Google Scholar 

  19. De Sanctis, M. C. et al. Spectroscopic characterization of mineralogy and its diversity across vesta. Science 336, 697–700 (2012).

    Article  Google Scholar 

  20. Russell, C. T. et al. Dawn at vesta: Testing the protoplanetary paradigm. Science 336, 684–686 (2012).

    Article  Google Scholar 

  21. Harrison, K. P. & Grimm, R. E. Thermal constraints on the early history of the H-chondrite parent body reconsidered. Geochim. Cosmochim. Acta 74, 5410–5423 (2010).

    Article  Google Scholar 

  22. Bottke, W. F., Vokrouhlicky, D., Rubincam, D. P. & Nesvorny, D. The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006).

    Article  Google Scholar 

  23. Bogard, D. D. & Garrison, D. H. 39Ar–40Ar ages of eucrites and thermal history of asteroid 4 Vesta. Meteorit. Planet. Sci. 38, 669–710 (2003).

    Article  Google Scholar 

  24. Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F. & Tsiganis, K. Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010).

    Article  Google Scholar 

  25. Minton, D. A. & Malhotra, R. Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207, 744–757 (2010).

    Article  Google Scholar 

  26. Davis, D. R., Chapman, C. R., Weidenschilling, S. J. & Greenberg, R. Collisional history of asteroids: evidence from Vesta and the Hirayama families. Icarus 63, 30–53 (1985).

    Article  Google Scholar 

  27. O’Brien, D. P., Morbidelli, A. & Bottke, W. F. The primordial excitation and clearing of the asteroid belt-Revisited. Icarus 191, 434–452 (2007).

    Article  Google Scholar 

  28. Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. Velocity distributions among colliding asteroids. Icarus 107, 255–268 (1994).

    Article  Google Scholar 

  29. Cohen, B. A. The Vestal cataclysm: Impact-melt clasts in howardites and the bombardment history of 4 Vesta. Meteorit. Planet. Sci. (in the press, 2012).

  30. Ivanov, B. A. Heating of the lithosphere during meteorite cratering. Solar Syst. Res. 38, 266–278 (2004).

    Article  Google Scholar 

  31. Keil, K., Stoeffler, D., Love, S. G. & Scott, E. R. D. Constraints on the role of impact heating and melting in asteroids. Meteoritics 32, 349–363 (1997).

    Article  Google Scholar 

  32. Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997).

    Article  Google Scholar 

  33. Ivanov, B. A. & Artemieva, N. A. Numerical modelling of the formation of large impact craters. GSA Special Paper 356, 619–630 (2002).

    Google Scholar 

  34. Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. in Planetary Materials (ed. Papike, James J.) Chapter 4, 4-001–4-196 (Reviews in Mineralogy, Vol. 36, Mineralogical Society of America, 1998).

    Google Scholar 

  35. Schenk, P. et al. The geologically recent giant impact basins at vesta’s south pole. Science 336, 694–697 (2012).

    Article  Google Scholar 

  36. Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690–693 (2012).

    Article  Google Scholar 

  37. Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K. & Levison, H. F. Constructing the secular architecture of the solar system II: The terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009).

    Article  Google Scholar 

  38. Agnor, C. B. & Lin, D. N. C. On the migration of Jupiter and Saturn: Constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).

    Article  Google Scholar 

  39. Strom, R. G., Malhotra, R., Ito, T., Yoshida, F. & Kring, D. A. The origin of planetary impactors in the inner solar system. Science 309, 1847–1850 (2005).

    Article  Google Scholar 

  40. Kring, D. A. et al. Portales Valley: A meteoritic sample of the brecciated and metal-veined floor of an impact crater on an H-chondrite asteroid. Meteorit. Planet. Sci. 34, 663–669 (1999).

    Article  Google Scholar 

  41. Weirich, J. R. et al. The Ar-Ar age and petrology of Miller Range 05029: Evidence for a large impact in the very early solar system. Meteorit. Planet. Sci. 45, 1868–1888 (2011).

    Article  Google Scholar 

  42. Kring, D. A., Swindle, T. D., Britt, D. T. & Grier, J. A. Cat Mountain: A meteoritic sample of an impact-melted asteroid regolith. J. Geophys. Res. 101, 29353–29372 (1996).

    Article  Google Scholar 

  43. Herzog, G. F. in Meteorites, Comets and Planets: Treatise on Geochemistry Vol. 1 (eds Davis., A. M., Holland, H. D. & Turekian., K. K.) (Elsevier B. V., 2005) ISBN 0-08-044720-1.

    Google Scholar 

  44. Wittmann, A., Swindle, T. D., Cheek, L. C., Frank, E. A. & Kring, D. A. Impact cratering on the H chondrite parent asteroid. J. Geophys. Res. 115, E07009 (2010).

    Article  Google Scholar 

  45. Milani, A. & Knezevic, Z. Asteroid proper elements and secular resonances. Icarus 98, 211–232 (1992).

    Article  Google Scholar 

  46. Wünnemann, K., Collins, G. S. & Melosh, H. J. A strain-based porosity model for the use in hydrocode simulations of impact and implications for transient crater growth in porous targets. Icarus 180, 514–527 (2006).

    Article  Google Scholar 

  47. Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modelling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Bogard, B. Ivanov, A. Morbidelli, D. Nesvorny, T. Swindle and the Dawn Science Team for helpful discussions and insightful comments. The contributions of S.M., W.F.B., B.A.C. and D.A.K. were supported by the NASA Lunar Science Institute (Center for Lunar Origin and Evolution at the Southwest Research Institute in Boulder, Colorado— NASA Grant NNA09DB32A; Center for Lunar Science and Exploration at the Lunar and Planetary Institute in Houston, Texas). The contribution of K.W. was funded by the Helmholtz-Alliance ‘Planetary Evolution and Life’. D.P.O’B. and P.S. thank the NASA Dawn at Vesta Participating Scientist Program. The contribution of M.C.D.S. was partially supported by Agenzia Spaziale Italiana. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and W.F.B. performed much of the numerical modelling work. K.W. performed the hydrocode simulations used to generate the impact heating relationships. Compilations of the Ar–Ar data, as well as a detailed analysis of how these age distributions should be interpreted, were provided by B.A.C., D.A.K., M.C.D.S. and S.M. All authors contributed to a discussion of the results and their implications.

Corresponding author

Correspondence to S. Marchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 815 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchi, S., Bottke, W., Cohen, B. et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geosci 6, 303–307 (2013). https://doi.org/10.1038/ngeo1769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing