Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection

Abstract

Mercury is the smallest and least tectonically active of the terrestrial planets1,2. Although Mercury’s ancient, cratered surface resembles the Moon, it has the largest ratio of metallic core to silicate mantle among the terrestrial planets3 as well as an internal magnetic field4. Images from the Mariner 10 spacecraft reveal lobate scarps, so called because of their curved or scalloped edges, which have been interpreted to be high-angle thrust faults5,6,7,8 resulting from a period of global contraction. A range of mechanisms has been invoked to explain the stresses leading to global contraction, including cooling and core formation5,9, tidal effects due to gravitational interactions with the Sun10, mantle convection11 and the impact that formed the Caloris basin12. Here I present numerical simulations of the three-dimensional nature of convection within Mercury’s silicate mantle. The model yields a regularly spaced pattern of convection, in which upwelling regions of the mantle assume linear, sheet-like shapes at low latitudes and a nearly hexagonal pattern near the poles. The distribution of resultant surface stresses is consistent with the observed pattern of lobate scarps, suggesting that the compressive features record an ancient pattern of mantle convection11, in addition to global contraction. The gravity and topographic data returned from the MESSENGER 11 mission13 will help test this hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature field after 750 million years of model evolution.
Figure 2: Orientation of compressional features on Mercury.
Figure 3: Principal stress axes at the surface for the flow field shown in Fig. 1a.

Similar content being viewed by others

References

  1. Solomon, S. C. Mercury: The enigmatic innermost planet. Earth Planet. Sci. Lett. 216, 441–455 (2003).

    Article  Google Scholar 

  2. Strom, R. G. & Sprague, A. L. Mercury: The Iron Planet 219 (Springer, New York, 2003).

    Google Scholar 

  3. Harder, H. & Schubert, G. Sulfur in Mercury’s core? Icarus 151, 118–122 (2001).

    Article  Google Scholar 

  4. Ness, N. F., Behannon, K. W., Lepping, R. P. & Whang, Y. C. Observations of Mercury’s magnetic field. Icarus 28, 479–488 (1976).

    Article  Google Scholar 

  5. Strom, R. G., Trask, N. J. & Guest, J. E. Tectonism and volcanism on Mercury. J. Geophys. Res. 80, 2478–2507 (1975).

    Article  Google Scholar 

  6. Solomon, S. C. The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter. 15, 135–145 (1977).

    Article  Google Scholar 

  7. Watters, T. R., Robinson, M. S. & Cook, A. C. Topography of lobate scarps on Mercury: New constraints on the planet’s contraction. Geology 26, 991–994 (1998).

    Article  Google Scholar 

  8. Watters, T. R., Schultz, R. A. & Robinson, M. S. Displacement–length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults. Geophys. Res. Lett. 27, 3659–3662 (2000).

    Article  Google Scholar 

  9. Melosh, H. J. & McKinnon, W. B. in Mercury (eds Vilas, F., Chapman, C. R. & Matthews, M. S.) 374–400 (Univ. of Arizona Press, Tucson, 1988).

    Google Scholar 

  10. Melosh, H. J. & Dzurisin, D. Mercurian global tectonics: A consequence of tidal despinning? Icarus 35, 227–236 (1978).

    Article  Google Scholar 

  11. Watters, T. R., Robinson, M. S., Bina, C. R. & Spudis, P. D. Thrust faults and the global contraction of Mercury. Geophys. Res. Lett. 31, L04701 (2004).

    Article  Google Scholar 

  12. Thomas, P. G., Masson, P. & Fleitout, L. in Mercury (eds Vilas, F., Chapman, C. R. & Matthews, M. S.) 401–428 (Univ. of Arizona Press, Tucson, 1988).

    Google Scholar 

  13. Solomon, S. C. et al. The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001).

    Article  Google Scholar 

  14. Zhong, S., Zuber, M. T., Moresi, L. N. & Gurnis, M. The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105, 11063–11082 (2000).

    Article  Google Scholar 

  15. Tan, E., Choi, E., Thoutireddy, P., Gurnis, M. & Aivazis, M. GeoFramework: Coupling multiple models of mantle convection within a computational framework. Geochem. Geophys. Geosyst. 7, Q06001 (2006).

    Article  Google Scholar 

  16. Steinbach, V. & Yuen, D. A. Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions. Phys. Earth Planet. Int. 86, 165–183 (1994).

    Article  Google Scholar 

  17. Hauck II, S. A., Dombard, A. J., Phillips, R., J. & Solomon, S. C. Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett. 222, 713–728 (2004).

    Article  Google Scholar 

  18. Schubert, G., Ross, M. N., Stevenson, D. J. & Spohn, T. in Mercury (eds Vilas, F., Chapman, C. R. & Matthews, M. S.) 429–460 (Univ. of Arizona Press, Tucson, 1988).

    Google Scholar 

  19. Redmond, H. L & King, S. D. Does mantle convection currently exist on Mercury? Phys. Earth Planet. Int. 164, 221–231 (2007).

    Article  Google Scholar 

  20. Karato, S.-I. & Wu, P. Rheology of the upper mantle: A synthesis. Science 260, 771–778 (1993).

    Article  Google Scholar 

  21. Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets 940 (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  22. Turcotte, D. L. & Schubert, G. Geodynamics: Application of Continuum Physics to Geological Problems (Wiley, New York, 1982).

    Google Scholar 

  23. Stanley, S., Bloxham, J., Hutchinson, W. E. & Zuber, M. T. Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 27–38 (2005).

    Article  Google Scholar 

  24. Solomatov, V. S. & Moresi, L.-N. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on terrestrial planets. Geophys. Res. Lett. 24, 1907–1910 (1997).

    Article  Google Scholar 

  25. Richards, M. A., Ricard, Y., Lithgow-Bertelloni, C., Spada, G. & Sabadini, G. An explanation for Earth’s long-term rotational stability. Science 275, 372–375 (1997).

    Article  Google Scholar 

  26. Steinberger, B. & O’Connell, R. J. Changes of the Earth’s rotation axis owing to advection of mantle density heterogeneities. Nature 387, 169–173 (1997).

    Article  Google Scholar 

  27. Watters, T. R., Schultz, R. A., Robinson, M. S. & Cook, A. C. The mechanical and thermal structure of Mercury’s early lithosphere. Geophys. Res. Lett. 29, 1542 (2002).

    Article  Google Scholar 

  28. Nimmo, F. & Watters, T. R. Depth of faulting on Mercury: Implications for heat flux and crustal and effective elastic thickness. Geophys. Res. Lett. 31, L02701 (2004).

    Article  Google Scholar 

  29. Elkins-Tanton, L. T., Zaranek, S. E., Parmentier, E. M. & Hess, P. C. Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

I acknowledge support from NSF award EAR-0317638.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. King.

Supplementary information

Supplementary Information

Supplementary table S1 (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, S. Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection. Nature Geosci 1, 229–232 (2008). https://doi.org/10.1038/ngeo152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing