Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H

Abstract

The alternative pathway of complement is activated continuously in vivo through the C3 'tick-over' pathway1. This pathway is triggered by the hydrolysis of C3, resulting in the formation of C3 convertase. This, in turn, generates C3b, which mediates many of the biological functions of complement. Factor H, the main regulator of this activation, prevents formation and promotes dissociation of the C3 convertase enzyme2,3, and, together with factor I, mediates the proteolytic inactivation of C3b4. Factor H deficiency, described in 29 individuals from 12 families5,6,7,8,9,10,11,12,13,14 and in pigs15, allows unhindered activation of fluid-phase C3 and severe depletion of plasma C3 (ref. 11). Membranoproliferative glomerulonephritis (MPGN) occurs in factor H–deficient humans6,12,13 and pigs15. Although MPGN has been reported in other conditions in which uncontrolled activation of C3 occurs, the role of C3 dysregulation in the pathogenesis of MPGN is not understood. Here we show that mice deficient in factor H (Cfh−/− mice) develop MPGN spontaneously and are hypersensitive to developing renal injury caused by immune complexes. Introducing a second mutation in the gene encoding complement factor B, which prevents C3 turnover in vivo, obviates the phenotype of Cfh−/− mice. Thus, uncontrolled C3 activation in vivo is essential for the development of MPGN associated with deficiency of factor H.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the murine factor H gene.
Figure 2: Renal pathology in Cfh−/− mice.
Figure 3: Immunoelectron microscopy showing subendothelial capillary wall deposits stained for C3 and C9 in 2-month Cfh−/− mice.
Figure 4: Glomerular C3 deposition and subendothelial electron-dense deposits do not develop in 2-month Cfh−/−Bf−/− mice.

Similar content being viewed by others

References

  1. Pangburn, M.K. & Muller-Eberhard, H.J. Relation of putative thioester bond in C3 to activation of the alternative pathway and the binding of C3b to biological targets of complement. J. Exp. Med. 152, 1102–1114 (1980).

    Article  CAS  Google Scholar 

  2. Pangburn, M.K. & Muller-Eberhard, H.J. Complement C3 convertase: cell surface restriction of β1H control and generation of restriction on neuraminidase-treated cells. Proc. Natl Acad. Sci. USA 75, 2416–2420 (1978).

    Article  CAS  Google Scholar 

  3. Weiler, J.M., Daha, M.R., Austen, K.F. & Fearon, D.T. Control of the amplification convertase of complement by the plasma protein β1H. Proc. Natl Acad. Sci. USA 73, 3268–3272 (1976).

    Article  CAS  Google Scholar 

  4. Pangburn, M.K., Schreiber, R.D. & Muller-Eberhard, H.J. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein β1H for cleavage of C3b and C4b in solution. J. Exp. Med. 146, 257–270 (1977).

    Article  CAS  Google Scholar 

  5. Vogt, B.A., Wyatt, R.J., Burke, B.A., Simonton, S.C. & Kashtan, C.E. Inherited factor H deficiency and collagen type III glomerulopathy. Pediatr. Nephrol. 9, 11–15 (1995).

    Article  CAS  Google Scholar 

  6. Rougier, N. et al. Human complement factor H deficiency associated with hemolytic uremic syndrome. J. Am. Soc. Nephrol. 9, 2318–2326 (1998).

    CAS  PubMed  Google Scholar 

  7. Ohali, M. et al. Hypocomplementemic autosomal recessive hemolytic uremic syndrome with decreased factor H. Pediatr. Nephrol. 12, 619–624 (1998).

    Article  CAS  Google Scholar 

  8. Fijen, C.A. et al. Heterozygous and homozygous factor H deficiency states in a Dutch family. Clin. Exp. Immunol. 105, 511–516 (1996).

    Article  CAS  Google Scholar 

  9. Nielsen, H.E. et al. Hereditary, complete deficiency of complement factor H associated with recurrent meningococcal disease. Scand. J. Immunol. 30, 711–718 (1989).

    Article  CAS  Google Scholar 

  10. Pichette, V. et al. Familial hemolytic-uremic syndrome and homozygous factor H deficiency. Am. J. Kidney Dis. 24, 936–941 (1994).

    Article  CAS  Google Scholar 

  11. Thompson, R.A. & Winterborn, M.H. Hypocomplementaemia due to a genetic deficiency of β1H globulin. Clin. Exp. Immunol. 46, 110–119 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Levy, M. et al. H deficiency in two brothers with atypical dense intramembranous deposit disease. Kidney Int. 30, 949–956 (1986).

    Article  CAS  Google Scholar 

  13. Lopez-Larrea, C. et al. A familial deficiency of complement factor H. Biochem. Soc. Trans. 15, 648–649 (1987).

    Article  Google Scholar 

  14. Brai, M., Misiano, G., Maringhini, S., Cutaja, I. & Hauptmann, G. Combined homozygous factor H and heterozygous C2 deficiency in an Italian family. J. Clin. Immunol. 8, 50–56 (1988).

    Article  CAS  Google Scholar 

  15. Hogasen, K., Jansen, J.H., Mollnes, T.E., Hovdenes, J. & Harboe, M. Hereditary porcine membranoproliferative glomerulonephritis type II is caused by factor H deficiency. J. Clin. Invest. 95, 1054–1061 (1995).

    Article  CAS  Google Scholar 

  16. Matsumoto, M. et al. Abrogation of the alternative complement pathway by targeted deletion of murine factor B. Proc. Natl Acad. Sci. USA 94, 8720–8725 (1997).

    Article  CAS  Google Scholar 

  17. Alexander, J.J., Hack, B.K., Cunningham, P.N. & Quigg, R.J. A protein with characteristics of factor H is present on rodent platelets and functions as the immune adherence receptor. J. Biol. Chem. 276, 32129–32135 (2001).

    Article  CAS  Google Scholar 

  18. Spitzer, R.E. et al. Serum C′3 lytic system in patients with glomerulonephritis. Science 164, 436–437 (1969).

    Article  CAS  Google Scholar 

  19. Daha, M.R., Fearon, D.T. & Austen, K.F. C3 Nephritic factor (C3NeF): stabilization of fluid phase and cell-bound alternative pathway convertase. J. Immunol. 116, 1–7 (1976).

    CAS  PubMed  Google Scholar 

  20. Galle, P. & Mahieu, P. Electron dense alteration of kidney basement membranes. A renal lesion specific of a systemic disease. Am. J. Med. 58, 749–764 (1975).

    Article  CAS  Google Scholar 

  21. Berger, J. & Galle, P. Alteration singuliere des membranes basales du rein. J. Urol. Nephrol. 68, 116–122 (1962).

    CAS  Google Scholar 

  22. West, C.D., Witte, D.P. & McAdams, A.J. Composition of nephritic factor-generated glomerular deposits in membranoproliferative glomerulonephritis type 2. Am. J. Kidney Dis. 37, 1120–1130 (2001).

    Article  CAS  Google Scholar 

  23. West, C.D. & McAdams, A.J. Paramesangial glomerular deposits in membranoproliferative glomerulonephritis type II correlate with hypocomplementemia. Am. J. Kidney Dis. 25, 853–861 (1995).

    Article  CAS  Google Scholar 

  24. Verroust, P.J., Wilson, C.B. & Dixon, F.J. Lack of nephritogenicity of systemic activation of the alternate complement pathway. Kidney Int. 6, 157–169 (1974).

    Article  CAS  Google Scholar 

  25. Simpson, I.J., Moran, J., Evans, D.J. & Peters, D.K. Prolonged complement activation in mice. Kidney Int. 13, 467–471 (1978).

    Article  CAS  Google Scholar 

  26. Droz, D., Nabarra, B., Noel, L.H., Leibowitch, J. & Crosnier, J. Recurrence of dense deposits in transplanted kidneys: I. Sequential survey of the lesions. Kidney Int. 15, 386–395 (1979).

    Article  CAS  Google Scholar 

  27. Vik, D.P., Keeney, J.B., Munoz-Canoves, P., Chaplin, D.D. & Tack, B.F. Structure of the murine factor H gene. J. Biol. Chem. 263, 16720–16724 (1988).

    CAS  PubMed  Google Scholar 

  28. Woodrow, D.F., Shore, I., Moss, J., Gower, P. & Phillips, M. Immunoelectron microscopic studies of immune complex deposits and basement membrane components in IgA nephropathy. J. Pathol. 157, 47–57 (1989).

    Article  CAS  Google Scholar 

  29. Robson, M.G. et al. Accelerated nephrotoxic nephritis is exacerbated in C1q-deficient mice. J. Immunol. 166, 6820–6828 (2001).

    Article  CAS  Google Scholar 

  30. Pepys, M.B., Dash, A.C., Fielder, A.H. & Mirjah, D.D. Isolation and study of murine C3. Immunology 33, 491–499 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Lewis and I. Shore for processing the samples for histology and electron microscopy; J. Meek for the serum albumin and creatinine analysis; R.B. Sim for help with western blotting of factor H; H. Colten for factor B–deficient mice; B.P. Morgan for the antibody against C9; and M.R. Daha for the antibody against factor H. M.C.P. is funded by the Arthritis Research Campaign. This work was also supported by the Wellcome trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Botto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickering, M., Cook, H., Warren, J. et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31, 424–428 (2002). https://doi.org/10.1038/ng912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing