Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic analysis of the mouse brain proteome

Abstract

Proteome analysis is a fundamental step in systematic functional genomics. Here we have resolved 8,767 proteins from the mouse brain proteome by large-gel two-dimensional electrophoresis. We detected 1,324 polymorphic proteins from the European collaborative interspecific backcross. Of these, we mapped 665 proteins genetically and identified 466 proteins by mass spectrometry. Qualitatively polymorphic proteins, to 96%, reflect changes in conformation and/or mass. Quantitatively polymorphic proteins show a high frequency (73%) of allele-specific transmission in codominant heterozygotes. Variations in protein isoforms and protein quantity often mapped to chromosomal positions different from that of the structural gene, indicating that single proteins may act as polygenic traits. Genetic analysis of proteomes may detect the types of polymorphism that are most relevant in disease-association studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein phenotypes determined by 2-DE.
Figure 2: Genetic map of mouse chromosome 3 (MMU3).
Figure 3: 2-DE brain protein pattern from a B6-SPR hybrid.

Similar content being viewed by others

References

  1. Klose, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243 (1975).

    CAS  PubMed  Google Scholar 

  2. O'Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klose, J. & Kobalz, U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034–1059 (1995).

    Article  CAS  Google Scholar 

  4. Klose, J. Large-gel 2-D electrophoresis. Methods Mol. Biol. 112, 147–172 (1999).

    CAS  PubMed  Google Scholar 

  5. Anderson, N.G., Metheson, A. & Anderson, N.L. Back to the future: the human protein index (HPI) and the agenda for post-proteomic biology. Proteomics 1, 3–12 (2001).

    Article  CAS  Google Scholar 

  6. Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U. & Wilson, A.C. Mitochondrial DNA evolution in mice. Genetics 107, 681–721 (1983).

    Google Scholar 

  7. Avner, P., Amar, L., Dandolo, L. & Guenet, J. L. Genetic analysis of the mouse using interspecific crosses. Trends. Genet. 4, 18–23 (1988).

    Article  CAS  Google Scholar 

  8. Breen, M. et al. Towards high resolution maps of the mouse and human genomes—a facility for ordering markers to 0.1 cM resolution. Hum. Mol. Genet. 3, 621–627 (1994).

    Article  CAS  Google Scholar 

  9. Rhodes, M. et al. A high-resolution microsatellite map of the mouse genome. Genome Res. 8, 531–542 (1998).

    Article  CAS  Google Scholar 

  10. Klose, J. Fractionated extraction of total tissue proteins from mouse and human for 2-D electrophoresis. Methods Mol. Biol. 112, 67–85 (1999).

    CAS  PubMed  Google Scholar 

  11. Gauss, C., Kalkum, M., Löwe, M., Lehrach, H. & Klose, J. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20, 575–600 (1999).

    Article  CAS  Google Scholar 

  12. Klose, J. Genotypes and phenotypes. Electrophoresis 20, 643–652 (1999).

    Article  CAS  Google Scholar 

  13. Damerval, C., Maurice, A., Josse, J. M. & de Vienne, D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137, 289–301 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehmann, W.D. in Massenspektrometrie in der Biochemie 410 (Spektrum, Heidelberg, 1996).

    Google Scholar 

  15. Strupat, K., Laras, M., Hillenkamp, F., Eckerskorn, C. & Lottspeich, F. Matrix-assisted laser-desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis. Anal. Chem. 66, 464–470 (1994).

    Article  CAS  Google Scholar 

  16. Thiellement, H. et al. Proteomics for genetic and physiological studies in plants. Electrophoresis 20, 2013–2026 (1999).

    Article  CAS  Google Scholar 

  17. Janke, C., Holzer, M., Klose, J. & Arendt, T. Distribution of isoforms of the microtubule-associated protein tau in grey and white matter areas of human brain: a two-dimensional gelelectrophoretic analysis. FEBS Lett. 379, 222–226 (1996).

    Article  CAS  Google Scholar 

  18. Whitney, J.B., Cobb, R.R., Popp, R.A. & O'Rourke, T.W. Detection of neutral amino acid substitutions in proteins. Proc. Natl Acad. Sci. USA 82, 7646–7650 (1985).

    Article  CAS  Google Scholar 

  19. Scriver, C.R. & Waters, P.J. Monogenic traits are not simple: lessons from phenylketonuria. Trends. Genet. 15, 267–272 (1999).

    Article  CAS  Google Scholar 

  20. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  21. Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  Google Scholar 

  22. Sunyaev, S., Ramensky, V. & Bork, P. Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet. 16, 198–200 (2000).

    Article  CAS  Google Scholar 

  23. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single- divergence of B2m alleles of wild Mus musculus and Mus spretus implies positive selection. Immunogenetics 38, 106–116 (1993).

    Google Scholar 

  24. Lacombe, C. et al. in Protides of the Biological Fluids; Proceedings of the Colloqium Vol. 32 (ed. Peeters, H.) 1001–1003 (Pergamon, Oxford, 1985).

    Google Scholar 

  25. Noel, D., Nikaido, K. & Ames, G.F. A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 18, 4159–4165 (1979).

    Article  CAS  Google Scholar 

  26. Litersky, J.M., Scott, C.W. & Johnson, G.V. Phosphorylation, calpain proteolysis and tubulin binding of recombinant human tau isoforms. Brain Res. 604, 32–40 (1993).

    Article  CAS  Google Scholar 

  27. Gerstner, A., Csapo, Z., Sasvari-Szekely, M. & Guttman, A. Ultrathin-layer sodium dodecyl sulfate gel electrophoresis of proteins: effects of gel composition and temperature on the separation of sodium dodecyl sulfate-protein complexes. Electrophoresis 21, 834–840 (2000).

    Article  CAS  Google Scholar 

  28. Wiltfang, J. et al. Improved electrophoretic separation and immunoblotting of β-amyloid (A-β) peptides 1–40, 1–42, and 1–43. Electrophoresis 18, 527–532 (1997).

    Article  CAS  Google Scholar 

  29. Lai, K., Langley, S.D., Dembure, P.P., Hjelm, L.N. & Elsas, L.J. Duarte allele impairs biostability of galactose-1-phosphate uridyltransferase in human lymphoblasts. Hum. Mutat. 11, 28–38 (1998).

    Article  CAS  Google Scholar 

  30. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  31. Pesole, G. et al. UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Nucleic. Acids Res. 28, 193–196 (2000).

    Article  CAS  Google Scholar 

  32. Phillips, P.C. From complex traits to complex alleles. Trends. Genet. 15, 6–8 (1999).

    Article  CAS  Google Scholar 

  33. Le Stunff, C., Fallin, D., Schork, N.J. & Bougneres, P. The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity. Nature Genet. 26, 444–446 (2000).

    Article  CAS  Google Scholar 

  34. Weiss, K.M. & Terwilliger, J.D. How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157 (2000).

    Article  CAS  Google Scholar 

  35. Silva, A.J. & White, R. Inheritance of allelic blueprints for methylation patterns. Cell 54, 145–152 (1988).

    Article  CAS  Google Scholar 

  36. Gooley, A.A. & Packer, N.H. in Proteome Research: New Frontiers in Functional Genomics (eds Wilkens, M.R., Williams, K.L., Appel, R.D. & Hochstrasser, D.F.) 65–91 (Springer, Berlin, 2001).

    Google Scholar 

  37. Kato, G.J. Human genetic disease of proteolysis. Hum. Mutat. 13, 87–98 (1999).

    Article  CAS  Google Scholar 

  38. Neuhoff, V., Arold, N., Taube, D. & Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262 (1988).

    Article  CAS  Google Scholar 

  39. Marcus, K., Immler, D., Sternberger, J. & Meyer, H.E. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins. Electrophoresis 21, 2622–2636 (2000).

    Article  CAS  Google Scholar 

  40. Zhang, W. & Chait, B.T. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72, 2482–2489 (2000).

    Article  CAS  Google Scholar 

  41. Schalkwyk, L.C. et al. Advanced integrated mouse YAC map including BAC framework. Genome Res. 11, 2142–2150 (2001).

    Article  CAS  Google Scholar 

  42. Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996).

    Article  CAS  Google Scholar 

  43. Schalkwyk, L.C. et al. Panel of microsattelite markers for whole-genome scans and radiation hybrid mapping and a mouse family tree. Genome Res. 9, 878–888 (1999).

    Article  CAS  Google Scholar 

  44. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  45. Church, G.M. & Gilbert, W. The genomic sequencing technique. Prog. Clin. Biol. Res. 177, 17–21 (1985).

    CAS  PubMed  Google Scholar 

  46. Lander, E.S. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  Google Scholar 

  47. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joachim Klose or Heinz Himmelbauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klose, J., Nock, C., Herrmann, M. et al. Genetic analysis of the mouse brain proteome. Nat Genet 30, 385–393 (2002). https://doi.org/10.1038/ng861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing