Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is characterized by dilation of collecting ducts and by biliary dysgenesis and is an important cause of renal- and liver-related morbidity and mortality. Genetic analysis of a rat with recessive polycystic kidney disease revealed an orthologous relationship between the rat locus and the ARPKD region in humans; a candidate gene was identified. A mutation was characterized in the rat and screening the 66 coding exons of the human ortholog (PKHD1) in 14 probands with ARPKD revealed 6 truncating and 12 missense mutations; 8 of the affected individuals were compound heterozygotes. The PKHD1 transcript, approximately 16 kb long, is expressed in adult and fetal kidney, liver and pancreas and is predicted to encode a large novel protein, fibrocystin, with multiple copies of a domain shared with plexins and transcription factors. Fibrocystin may be a receptor protein that acts in collecting-duct and biliary differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the rat PCK and human ARPKD candidate regions, and expression analysis of PKHD1.
Figure 2: Mutation analysis of the PCK rat and individuals with ARPKD.
Figure 3: Analysis of fibrocystin homologies.
Figure 4: Model of fibrocystin.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Guay-Woodford, L.M. Autosomal recessive polycystic kidney disease: clinical and genetic profiles. in Polycystic Kidney Disease (eds Watson, M.L. & Torres, V.E.) 237–266 (Oxford University Press, New York, 1996).

    Google Scholar 

  2. Zerres, K., Rudnik-Schöneborn, S., Steinkamm, C., Becker, J. & Mücher, G. Autosomal recessive polycystic kidney disease. J. Mol. Med. 76, 303–309 (1998).

    Article  CAS  Google Scholar 

  3. MacRae Dell, K.M. & Avner, E.D. Autosomal recessive polycystic kidney disease. in GeneReviews; Genetic Disease Online Reviews at GeneTests-GeneClinics (University of Washington, Seattle, 2001).

    Google Scholar 

  4. Zerres, K., Volpel, M.-C. & Wei, B.H. Cystic kidneys. Hum. Genet. 68, 104–135 (1984).

    Article  CAS  Google Scholar 

  5. McDonald, R., Watkins, S.L. & Avner, E.D. Polycystic kidney disease. in Pediatric Nephrology (eds Barratt, T.M., Avner, E.D. & Harmon, W.E.) 459–480 (Lippincott, Williams and Wilkins, Baltimore, 1999).

    Google Scholar 

  6. Bernstein, J. & Slovis, T.L. Polycystic diseases of the kidney. in Pediatric Kidney Disease Vol. 2 (ed. Edelmann, C.M.) 1139–1157 (Little, Brown, Boston, 1992).

    Google Scholar 

  7. Zerres, K. et al. Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am. J. Med. Genet. 76, 137–144 (1998).

    Article  CAS  Google Scholar 

  8. Roy, S., Dillon, M.J., Trompeter, R.S. & Barratt, T.M. Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr. Nephrol. 11, 302–306 (1997).

    Article  CAS  Google Scholar 

  9. Kaplan, B.S., Fay, J., Shah, V., Dillon, M.J. & Barratt, T.M. Autosomal recessive polycystic kidney disease. Pediatr. Nephrol. 3, 43–49 (1989).

    Article  CAS  Google Scholar 

  10. Kaariainen, H., Koskimies, O. & Norio, R. Dominant and recessive polycystic kidney disease in children: evaluation of clinical features and laboratory data. Pediatr. Nephrol. 2, 296–302 (1988).

    Article  CAS  Google Scholar 

  11. Osathanondh, V. & Potter, E.L. Pathogenesis of polycystic kidneys. Type 1 due to hyperplasia of interstitial portions of the collecting tubules. Archives of Pathology 77, 466–473 (1964).

    CAS  PubMed  Google Scholar 

  12. Blyth, H. & Ockenden, B.G. Polycystic disease of kidneys and liver presenting in childhood. J. Med. Genet. 8, 257–284 (1971).

    Article  CAS  Google Scholar 

  13. Cole, B.R., Conley, S.B. & Stapleton, F.B. Polycystic kidney disease in the first year of life. J. Pediatr. 111, 693–699 (1987).

    Article  CAS  Google Scholar 

  14. Zerres, K. et al. Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Acta. Paediatr. 85, 437–445 (1996).

    Article  CAS  Google Scholar 

  15. Jorgensen, M.J. The ductal plate malformation: a study of the intrahepatic bile duct lesion in infantile polycystic disease and congenital hepatic fibrosis. Acta Pathol. Microbiol. Scand. Suppl. 257, 1–87 (1977).

    Google Scholar 

  16. Desmet, V.J. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology 16, 1069–1083 (1992).

    Article  CAS  Google Scholar 

  17. Calvet, J.P. Polycystic kidney disease: primary extracellular matrix abnormality or defective cellular differentiation? Kidney Int. 43, 101–108 (1993).

    Article  CAS  Google Scholar 

  18. Kaplan, B.S. et al. Variable expression of autosomal recessive polycystic kidney disease and congenital hepatic fibrosis within a family. Am. J. Med. Genet. 29, 639–647 (1988).

    Article  CAS  Google Scholar 

  19. Deget, F., Rudnik-Schoneborn, S. & Zerres, K. Course of autosomal recessive polycystic kidney disease (ARPKD) in siblings: a clinical comparison of 20 sibships. Clin. Genet. 47, 248–253 (1995).

    Article  CAS  Google Scholar 

  20. Zerres, K. et al. Mapping of the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nature Genet. 7, 429–432 (1994).

    Article  CAS  Google Scholar 

  21. Guay-Woodford, L.M. et al. The severe perinatal form of autosomal recessive polycystic kidney disease maps to chromosome 6p21.1-p12: implications for genetic counseling. Am. J. Hum. Genet. 56, 1101–1107 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lens, X.M. et al. An integrated genetic and physical map of the autosomal recessive polycystic kidney disease region. Genomics 41, 463–466 (1997).

    Article  CAS  Google Scholar 

  23. Mücher, G. et al. Fine mapping of the autosomal recessive polycystic kidney disease locus (PKHD1) and the genes MUT, RDS, CSNK2β, and GSTA1 at 6p21.2-p12. Genomics 48, 40–45 (1998).

    Article  Google Scholar 

  24. Park, J.H. et al. A 1-Mb BAC/PAC-based physical map of the autosomal recessive polycystic kidney disease gene (PKHD1) region on chromosome 6. Genomics 57, 249–255 (1999).

    Article  CAS  Google Scholar 

  25. Onuchic, L.F. et al. Genomic organization of the KIAA0057 gene that encodes a TRAM-like protein and its exclusion as a polycystic kidney and hepatic disease 1 (PKHD1) candidate gene. Mamm. Genome 10, 1175–1178 (1999).

    Article  CAS  Google Scholar 

  26. Hofmann, Y. et al. Genomic structure of the gene for the human P1 protein (MCM3) and its exclusion as a candidate for autosomal recessive polycystic kidney disease. Eur. J. Hum. Genet. 8, 163–166 (2000).

    Article  CAS  Google Scholar 

  27. McDonald, R.A. & Avner, E.D. Mouse models of polycystic kidney disease. in Polycystic Kidney Disease (eds Watson, M.L. & Torres, V.E.) 63–87 (Oxford University Press, Oxford, 1996).

    Google Scholar 

  28. Moyer, J.H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 263, 1329–1333 (1994).

    Article  Google Scholar 

  29. Lager, D.J., Qian, Q., Bengal, R.J., Ishibashi, M. & Torres, V.E. The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int. 59, 126–136 (2001).

    Article  CAS  Google Scholar 

  30. Sanzen, T. et al. Polycystic kidney rat is a novel animal model of Caroli's disease associated with congenital hepatic fibrosis. Am. J. Pathol. 158, 1605–1612 (2001).

    Article  CAS  Google Scholar 

  31. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  32. Rossetti, S. et al. A complete mutation screen of the ADPKD genes by DHPLC. Kidney Int. (in press) (2002).

  33. Xiao, W. & Oefner, P.J. Denaturing high-performance liquid chromatography: a review. Hum. Mutat. 17, 439–474 (2001).

    Article  CAS  Google Scholar 

  34. MacKay, K. et al. Glomerular epithelial, mesangial, and endothelial cell lines from transgenic mice. Kidney Int. 33, 677–684 (1988).

    Article  CAS  Google Scholar 

  35. Bork, P., Doerks, T., Springer, T.A. & Snel, B. Domains in plexins: links to integrins and transcription factors. Trends Biochem. Sci. 24, 261–263 (1999).

    Article  CAS  Google Scholar 

  36. Park, M. et al. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc. Natl Acad. Sci. USA 84, 6379–6383 (1987).

    Article  CAS  Google Scholar 

  37. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  Google Scholar 

  38. Wang, M.H. et al. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science 266, 117–119 (1994).

    Article  CAS  Google Scholar 

  39. Scott, D.A. et al. Refining the DFNB7-DFNB11 deafness locus using intragenic polymorphisms in a novel gene, TMEM2. Gene 246, 265–274 (2000).

    Article  CAS  Google Scholar 

  40. Pearson, R.B. & Kemp, B.E. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 200, 62–81 (1991).

    Article  CAS  Google Scholar 

  41. Blickman, J.G., Bramson, R.T. & Herrin, J.T. Autosomal recessive polycystic kidney disease: long-term sonographic findings in patients surviving the neonatal period. Am. J. Roentgenol. 164, 1247–1250 (1995).

    Article  CAS  Google Scholar 

  42. Uhari, M. & Herva, R. Polycystic kidney disease of perinatal type. Acta Paediatr. Scand. 68, 443–444 (1979).

    Article  CAS  Google Scholar 

  43. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  44. Yeh, R.F., Lim, L.P. & Burge, C.B. Computational inference of homologous gene structures in the human genome. Genome Res. 11, 803–816 (2001).

    Article  CAS  Google Scholar 

  45. Harris, P.C. et al. Rapid genetic analysis of families with polycystic kidney disease by means of a microsatellite marker. Lancet 338, 1484–1487 (1991).

    Article  CAS  Google Scholar 

  46. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  Google Scholar 

  47. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997).

    Article  CAS  Google Scholar 

  48. Sonnhammer, E.L.L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. in Proceedings of Sixth International Conference on Intelligent Systems for Molecular Biology (eds Glasgow, J., Littlejohn, T., Major, F., Lathrop, R., Sankoff, D. & Sensen, C.) 175–182 (AAAI, Menlo Park, 1998).

    Google Scholar 

  49. Claros, M.G. & von Heijne, G. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10, 685–686 (1994).

    CAS  PubMed  Google Scholar 

  50. Rost, B., Fariselli, P. & Casadio, R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5, 1704–1718 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for taking part in the study, M. El Youssef, J. Gloor, E.N. Haugen, P.S. Kamath and B.Z. Morgenstern for referring patients, and P. Fraught, M. de Andrade and E.J. Atkinson for assistance. Charles River Japan are thanked for the gift of the breeding pairs of PCK rats. The work was supported by grants from the National Institutes of Health, the PKD Foundation (to S.R. and M.H.), the Mayo Graduate School and Foundation, Mayo Cancer Center and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, C., Hogan, M., Rossetti, S. et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30, 259–269 (2002). https://doi.org/10.1038/ng833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing