Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wildtype Kras2 can inhibit lung carcinogenesis in mice

Abstract

Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal–regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lung tumor bioassays using heterozygous K ras2-deficient mice.
Figure 2: Lung tumors from heterozygous K ras2-deficient mice.
Figure 3: Growth suppression by wildtype K ras2 in a transformed NIH/3T3 cell line (R16).
Figure 4: Growth suppression by wildtype Kras2 in a mouse lung tumor cell line (LM2).
Figure 5: Activation status of Kras2 and ERK in LM2 cells expressing wildtype Kras2.
Figure 6: Nude mouse tumorigenicity assays of wildtype Kras2 transfected tumor cells.
Figure 7: LOH on chromosome 6 in mouse lung tumors.

Similar content being viewed by others

References

  1. Anderson, M., Reynolds, S., You, M. & Maronpot, R. Role of proto-oncogene activation in carcinogenesis. Environ. Health Perspect. 98, 12–24 (1992).

    Article  Google Scholar 

  2. Barbacid, M. Ras genes. Annu. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  3. Marshall, C. How does p21ras transform cells? Trends Genet. 7, 91–95 (1991).

    Article  CAS  Google Scholar 

  4. Hua, V., Wang, W. & Duesberg, P. Dominant transformation by mutated human ras genes in vitro requires more than 100 times higher expression than is observed in cancers. Proc. Natl Acad. Sci. USA 94, 9614–9619 (1997).

    Article  CAS  Google Scholar 

  5. You, M., Candrian, U., Maronpot, R., Stoner, G. & Anderson, M. Activation of the K-ras protooncogenes in spontaneously occurring and chemically induced lung tumors of the strain a mouse. Proc. Natl Acad. Sci. USA 86, 3070–3074 (1989).

    Article  CAS  Google Scholar 

  6. Guerrero, I., Calzada, P., Mayer, A. & Pellicer, A. A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene. Proc. Natl. Acad. Sci. USA 81, 202–205 (1984).

    Article  CAS  Google Scholar 

  7. Spandidos, D. & Wilkie, N. Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 310, 469–473 (1984).

    Article  CAS  Google Scholar 

  8. Sorrentino, V., McKinney, M., Drozdoff, V., Hume, C. & Fleissner, E. Spontaneous or carcinogen-mediated amplification of a mutated ras gene promotes neoplastic transformation. Oncogene Res. 2, 189–195 (1988).

    CAS  PubMed  Google Scholar 

  9. Cohen, J. & Levinson, A. A point mutation in the last intron responsible for increased expression and transforming activity of the c-Ha-ras oncogene. Nature 334, 119–124 (1988).

    Article  CAS  Google Scholar 

  10. Finney, R. & Bishop, M. Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science 260, 1524–1527 (1993).

    Article  CAS  Google Scholar 

  11. Hegi, M.E. et al. Allelotype analysis of mouse lung carcinomas reveals frequent allelic losses on chromosome 4 and an association between allelic imbalances on chromosome 6 and K-ras activation. Cancer Res. 54, 6257–6264 (1994).

    CAS  PubMed  Google Scholar 

  12. Bremner, R. & Balmain, A. Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61, 407–417 (1990).

    Article  CAS  Google Scholar 

  13. Buchmann, A., Ruggeri, B., Klein-Szanto, A.J. & Balmain, A. Progression of squamous carcinoma cells to spindle carcinomas of mouse skin is associated with an imbalance of H-ras alleles on chromosome 7. Cancer Res. 51, 4097–4101 (1991).

    CAS  PubMed  Google Scholar 

  14. Stewart, S. & Guan, K.L. The dominant negative Ras mutant, N17Ras, can inhibit signaling independently of blocking Ras activation. J. Biol. Chem. 275, 8854–8862 (2000).

    Article  CAS  Google Scholar 

  15. Shichinohe, T. et al. Suppression of pancreatic cancer by the dominant negative ras mutant, N116Y. J. Surg. Res. 66, 125–130 (1996).

    Article  CAS  Google Scholar 

  16. Dammann, R. et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genet. 25, 315–319 (2000).

    Article  CAS  Google Scholar 

  17. Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11, 2468–2481 (1997).

    Article  CAS  Google Scholar 

  18. Shimkin, M.B. & Stoner, G.D. Lung tumors in mice: application to carcinogenesis bioassay. Adv. Cancer Res. 21, 1–58 (1975).

    Article  CAS  Google Scholar 

  19. McDoniels-Silvers, A.L., Herzog, C.R., Tyson, F.L., Malkinson, A.M. & You, M. Inactivation of both Rb and p53 pathways in mouse lung epithelial cell lines. Exp. Lung Res. 27, 297–318 (2001).

    Article  CAS  Google Scholar 

  20. Manenti, G. et al. Linkage disequilibrium and physical mapping of Pas1 in mice. Genome Res. 9, 639–646 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sills, R.C., Hong, H.L., Melnick, R.L., Boorman, G.A. & Devereux, T.R. High frequency of codon 61 K-ras A →T transversions in lung and Harderian gland neoplasms of B6C3F1 mice exposed to chloroprene (2-chloro-1,3-butadiene) for 2 years, and comparisons with the structurally related chemicals isoprene and 1,3-butadiene. Carcinogenesis 20, 657–662 (1999).

    Article  CAS  Google Scholar 

  22. Lowry, D. & Willumsen, B. Function and regulation of Ras. Ann. Rev. Biochem. 62, 851–891 (1993).

    Article  Google Scholar 

  23. McCormick, F. Activators and effectors of Ras p21 proteins. Curr. Opin. Genet. Dev. 4, 71–76 (1994).

    Article  CAS  Google Scholar 

  24. Takeuchi, S. et al. Frequent loss of heterozygosity in region of the k1p1 locus in non–small cell lung cancer: evidence for a new tumor suppressor gene on the short arm of chromosome 12. Cancer Res. 56, 738–740 (1996).

    CAS  PubMed  Google Scholar 

  25. De Gregorio, L. et al. Prognostic value of loss of heterozygosity and K-Ras mutations in lung adenocarcinoma. Int. J. Cancer 79, 269–272 (1998).

    Article  CAS  Google Scholar 

  26. Cowley, S., Paterson, H., Kemp, P. & Marshall, C.J. Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852 (1994).

    Article  CAS  Google Scholar 

  27. Borasio, G.D. et al. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2, 1087–1096 (1989).

    Article  CAS  Google Scholar 

  28. Borasio, G.D., Markus, A., Wittinghofer, A., Barde, Y.A. & Heumann, R. Involvement of ras p21 in neurotrophin-induced response of sensory, but not sympathetic neurons. J. Cell Biol. 121, 665–672 (1993).

    Article  CAS  Google Scholar 

  29. Heumann, R. Neurotrophin signalling. Curr. Opin. Neurobiol. 4, 668–679 (1994).

    Article  CAS  Google Scholar 

  30. Greene, L.A. & Tischler, A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 2424–2428 (1976).

    Article  CAS  Google Scholar 

  31. Noda, M. et al. Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature 318, 73–75 (1985).

    Article  CAS  Google Scholar 

  32. Bar-Sagi, D. & Feramisco, J.R. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 42, 841–848 (1985).

    Article  CAS  Google Scholar 

  33. Guerrero, I., Wong, H., Pellicer, A. & Burstein, D.E. Activated N-ras gene induces neuronal differentiation of PC12 rat pheochromocytoma cells. J. Cell Physiol. 129, 71–76 (1986).

    Article  CAS  Google Scholar 

  34. Feig, L.A. & Cooper, G.M. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell Biol. 8, 3235–3243 (1988).

    Article  CAS  Google Scholar 

  35. Chang, E.H., Furth, M.E., Scolnick, E.M., & Lowy, D.R. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 10, 479–483 (1982).

    Article  Google Scholar 

  36. Pulciani, S., Santos, E., Long, L.K., Sorrention, V., & Barbacid, M. ras gene amplification and malignant transformation. Mol. Cell. Biol. 5, 2836–2841 (1985).

    Article  CAS  Google Scholar 

  37. Cichutek, K. & Duesberg, P.H. Recombinant BALB and Harvey sarcoma viruses with normal proto-ras-coding regions transform embryo cells in culture and cause tumors in mice. J. Virol. 63, 1377–1383 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Corominas, M., Perucho, M., Newcomb, E. W. & Pellicer, A. Differential expression of the normal and mutated Kras alleles in chemically induced thymic lymphomas. Cancer Res. 51, 5129–5133 (1991).

    CAS  PubMed  Google Scholar 

  39. Chen, B., Johanson, L., Wiest, J.S., Anderson, M.W. & You, M. The second intron of the K-ras gene contains regulatory elements associated with mouse lung tumor susceptibility. Proc. Natl Acad. Sci. USA 91, 1589–1593 (1994).

    Article  CAS  Google Scholar 

  40. Schwab, M., Alitalo, K., Varmus, H.E., Bishop, J.M., & George, D.A cellular oncogene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumour cells. Nature 303, 497–501 (1983).

    Article  CAS  Google Scholar 

  41. Heighway, J. & Hasleton, P. S. c-Ki-ras amplification in human lung cancer. Br. J. Cancer 53, 285–287 (1986).

    Article  CAS  Google Scholar 

  42. Shiraishi, M., Noguchi, M., Shimosato, Y., & Sekiya, T. Amplification of protooncogenes in surgical specimens of human lung carcinomas. Cancer Res. 49, 6474–6479 (1989).

    CAS  PubMed  Google Scholar 

  43. Slebos, R.J.C., Eyers, S.G., Wagenaar, S.S., & Rodenhuis, S. Cellular protoonocogenes are infrequently amplified in untreated non–small cell lung cancer. Br. J. Cancer 59, 76–80 (1989).

    Article  CAS  Google Scholar 

  44. Field, J.K. & Spandidos, D.A. The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis (review). Anticancer Res. 10, 1–22 (1990).

    CAS  PubMed  Google Scholar 

  45. Brison, O. Gene amplification and tumor progression. Biochim. Biophys. Acta 1155, 25–41 (1993).

    CAS  PubMed  Google Scholar 

  46. Esteller, M., Garcia, A., Martinez-Palones, J. M., Xercavins, J. & Reventos, J. The clinicopathological significance of K-ras point mutation and gene amplification in endometrial cancer. Eur. J. Cancer 33, 1572–1577 (1997).

    Article  CAS  Google Scholar 

  47. Saranath, D. et al. Oncogene amplification in squamous cell carcinoma of the oral cavity. Jpn. J. Cancer Res. 80, 430–437 (1989).

    Article  CAS  Google Scholar 

  48. George, D.L. et al. Structure and expression of amplified cKi-ras gene sequences in Y1 mouse adrenal tumor cells. EMBO J. 4, 1199–1203 (1985).

    Article  CAS  Google Scholar 

  49. National Toxicology Program Toxicology and carcinogenesis studies of chloroprene (CAS no. 126-99-8) in F344/N rats and B6C3F1 mice (inhalation studies). NTP Technical Report 467, NIH Publication no. 96–3957, NIEHS, NIH, Research Triangle Park, North Carolina (1996).

  50. Herrmann, C., Martin, G.A. & Wittinghofer, A. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol. Chem. 270, 2901–2905 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. de la Chapelle, G. Leone, G. Stoner and H. Schut for their critical reading of this manuscript and helpful discussions. We thank A. Malkinson for LM2 cells and E. Wiley for secretarial assistance. Some of the work was performed at Medical College of Ohio (Toledo, Ohio). This work was supported by NIH grants R01CA58554 (M.Y.), R01CA78797 (Y.W.) and R01GM62694 (K.-L.-G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yian Wang or Ming You.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Wang, Y., Vikis, H. et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 29, 25–33 (2001). https://doi.org/10.1038/ng721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing