Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high-resolution atlas of nucleosome occupancy in yeast

Abstract

We present the first complete high-resolution map of nucleosome occupancy across the whole Saccharomyces cerevisiae genome, identifying over 70,000 positioned nucleosomes occupying 81% of the genome. On a genome-wide scale, the persistent nucleosome-depleted region identified previously in a subset of genes demarcates the transcription start site. Both nucleosome occupancy signatures and overall occupancy correlate with transcript abundance and transcription rate. In addition, functionally related genes can be clustered on the basis of the nucleosome occupancy patterns observed at their promoters. A quantitative model of nucleosome occupancy indicates that DNA structural features may account for much of the global nucleosome occupancy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of nucleosomes around the CHA1 and HIS3 promoters.
Figure 2: TSSs are demarcated by NDRs.
Figure 3: NDRs align with TSSs and not with translation start sites.
Figure 4: Clustering promoter nucleosome signatures.
Figure 5: Relative nucleosome occupancy of promoters is related to presence of TFBSs of nuclear transcription factors, and correlates with enrichment of TFBSs near −100 bp.
Figure 6: Correlations between nucleosome occupancy measurements and local DNA properties.

Accession codes

Accessions

ArrayExpress

References

  1. Noll, M. & Kornberg, R.D. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109, 393–404 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Richmond, T.J. & Davey, C.A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lohr, D. & Lopez, J. GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1–10 and GAL80 genes. J. Biol. Chem. 270, 27671–27678 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Martinez-Campa, C. et al. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol. Cell 15, 69–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Straka, C. & Horz, W. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10, 361–368 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernstein, B.E., Liu, C.L., Humphrey, E.L., Perlstein, E.O. & Schreiber, S.L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yuan, G.C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae . Science 309, 626–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Ioshikhes, I.P., Albert, I., Zanton, S.J. & Pugh, B.F. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38, 1210–1215 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 103, 5320–5325 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. MacIsaac, K.D. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae . BMC Bioinformatics 7, 113 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moreira, J.M. & Holmberg, S. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J. 17, 6028–6038 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sekinger, E.A., Moqtaderi, Z. & Struhl, K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell 18, 735–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X., Lee, C.K., Granek, J.A., Clarke, N.D. & Lieb, J.D. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome. Res. 16, 1517–1528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Keogh, M.C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Raisner, R.M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Satchwell, S.C., Drew, H.R. & Travers, A.A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y.H., Amirhaeri, S., Kang, S., Wells, R.D. & Griffith, J.D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 669–671 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Suter, B., Schnappauf, G. & Thoma, F. Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo . Nucleic Acids Res. 28, 4083–4089 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wong, B., Chen, S., Kwon, J.A. & Rich, A. Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 104, 2229–2234 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Morse, R.H. Getting into chromatin: how do transcription factors get past the histones? Biochem. Cell Biol. 81, 101–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Roth, F.P., Hughes, J.D., Estep, P.W. & Church, G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Lascaris, R.F., Groot, E., Hoen, P.B., Mager, W.H. & Planta, R.J. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene. Nucleic Acids Res. 28, 1390–1396 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fedor, M.J., Lue, N.F. & Kornberg, R.D. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204, 109–127 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Yarragudi, A., Miyake, T., Li, R. & Morse, R.H. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae . Mol. Cell. Biol. 24, 9152–9164 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, C.L. et al. Single-nucleosome mapping of histone modifications in S. cerevisiae . PLoS Biol. 3, e328 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kornberg, R.D. & Stryer, L. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 16, 6677–6690 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288 (1996).

    Google Scholar 

  36. el Hassan, M.A. & Calladine, C.R. Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol. 259, 95–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Kasten, M.M. & Stillman, D.J. Identification of the Saccharomyces cerevisiae genes STB1–STB5 encoding Sin3p binding proteins. Mol. Gen. Genet. 256, 376–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hogan, G.J., Lee, C.K. & Lieb, J.D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, S.M., Tan, F.J., McCullough, H.L., Riordan, D.P. & Fire, A.Z. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 16, 1505–1516 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Studitsky, V.M., Kassavetis, G.A., Geiduschek, E.P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Ozsolak, F., Song, J.S., Liu, X.S. & Fisher, D.E. High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25, 244–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zanton, S.J. & Pugh, B.F. Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev. 20, 2250–2265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Macisaac, K.D. et al. A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data. Bioinformatics 22, 423–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Ponomarenko, J.V. et al. Conformational and physicochemical DNA features specific for transcription factor binding sites. Bioinformatics 15, 654–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Sivolob, A., De Lucia, F., Alilat, M. & Prunell, A. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles. J. Mol. Biol. 295, 55–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Champ, P.C., Maurice, S., Vargason, J.M., Camp, T. & Ho, P.S. Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. Nucleic Acids Res. 32, 6501–6510 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. Least angle regression. Ann. Stat. 32, 407–451 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Giaever for scientific advice; members of the HIP-HOP labs at Stanford and Toronto for advice and encouragement; C. Palm for help with data analysis; S.J. Altschuler (Univ. Texas Southwester Medical Center) and G.-C. Yuan (Harvard Univ.) for software for the HMM; and Z. Zhang, Q. Morris and E. Chan for discussions. W.L. is supported by a training grant from the US National Institutes of Health, and the work was supported by grants from the National Human Genome Research Institute (R.W.D. and C.N.), the National Science Foundation (R.H.M.), Genome Canada and the Ontario Genomics Institute (N.B., D.T. and T.R.H.).

Author information

Authors and Affiliations

Authors

Contributions

W.L. preformed experiments, collected and analyzed the data, prepared figures and co-wrote the paper. R.W.D. provided essential input into the study design and interpretation. D.T. designed the Lasso model, analyzed all of the data, ran the HMM, and prepared figures. N.B. did data analysis on TFBSs. R.H.M. contributed to the initial study design, provided essential experimental advice, and contributed text. T.R.H. directed the detailed data analysis, and contributed figures and text. C.N. designed the study, directed the work and wrote the paper.

Corresponding author

Correspondence to Corey Nislow.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1–3 (PDF 1700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W., Tillo, D., Bray, N. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39, 1235–1244 (2007). https://doi.org/10.1038/ng2117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing