Subjects

Abstract

With an overall prevalence of 10–20%, gallstone disease (cholelithiasis) represents one of the most frequent and economically relevant health problems of industrialized countries1,2. We performed an association scan of >500,000 SNPs in 280 individuals with gallstones and 360 controls. A follow-up study of the 235 most significant SNPs in 1,105 affected individuals and 873 controls replicated the disease association of SNP A-1791411 in ABCG8 (allelic P value PCCA = 4.1 × 10−9), which was subsequently attributed to coding variant rs11887534 (D19H). Additional replication was achieved in 728 German (P = 2.8 × 10−7) and 167 Chilean subjects (P = 0.02). The overall odds ratio for D19H carriership was 2.2 (95% confidence interval: 1.8–2.6, P = 1.4 × 10−14) in the full German sample. Association was stronger in subjects with cholesterol gallstones (odds ratio = 3.3), suggesting that His19 might be associated with a more efficient transport of cholesterol into the bile.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Mechanisms of disease: the genetic epidemiology of gallbladder stones. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 423–433 (2005).

  2. 2.

    et al. Independent risk factors for gallstone formation in a region with high cholelithiasis prevalence. Digestion 71, 97–105 (2005).

  3. 3.

    Über die familäre Häufung der Gallenblasenkrankheiten. Zeitschrift für Menschliche Vererbungs- und Konstitutionslehre 20, 528–582 (1937).

  4. 4.

    , & Familiäre Häufung von Gallensteinen. Dtsch. med. Wschr. 114, 1059–1063 (1989).

  5. 5.

    et al. Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs. Hepatology 41, 1138–1143 (2005).

  6. 6.

    et al. Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice. Proc. Natl. Acad. Sci. USA 92, 7729–7733 (1995).

  7. 7.

    et al. Quantitative trait loci mapping for cholesterol gallstones in AKR/J and C57L/J strains of mice. Physiol. Genomics 4, 59–65 (2000).

  8. 8.

    et al. Lith genes control mucin accumulation, cholesterol crystallization, and gallstone formation in A/J and AKR/J inbred mice. Hepatology 36, 1145–1154 (2002).

  9. 9.

    et al. FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 125, 868–881 (2003).

  10. 10.

    et al. A genomewide search finds major susceptibility loci for gallbladder disease on chromosome 1 in Mexican Americans. Am. J. Hum. Genet. 78, 377–392 (2006).

  11. 11.

    , , & Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

  12. 12.

    & Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch. 453, 745–752 (2007).

  13. 13.

    , , & Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum. Mutat. 18, 359–360 (2001).

  14. 14.

    et al. Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J. Hum. Genet. 47, 285–310 (2002).

  15. 15.

    et al. Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. BMC Gastroenterol. 6, 36 (2006).

  16. 16.

    et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775 (2000).

  17. 17.

    et al. Sitosterolemia. J. Lipid Res. 33, 945–955 (1992).

  18. 18.

    et al. Gallstones: genetics versus environment. Ann. Surg. 235, 842–849 (2002).

  19. 19.

    , , , & High familial prevalence of gallstones in the first-degree relatives of gallstone patients. Hepatology 22, 138–141 (1995).

  20. 20.

    , , & Genetic determinants of variation in gallbladder disease in the Mexican-American population. Genet. Epidemiol. 16, 191–204 (1999).

  21. 21.

    et al. Investigation of the Lith1 candidate genes ABCB11 and LXRA in human gallstone disease. Hepatology 44, 650–657 (2006).

  22. 22.

    et al. Investigation of the Lith6 candidate genes APOBEC1 and PPARG in human gallstone disease. Liver Int. (in the press).

  23. 23.

    et al. Association of a lithogenic Abcg5/Abcg8 allele on Chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice. Mamm. Genome 16, 495–504 (2005).

  24. 24.

    et al. Are plasma lipid levels related to ABCG5/ABCG8 polymorphisms? A preliminary study in siblings with gallstones. Eur. J. Intern. Med. 17, 490–494 (2006).

  25. 25.

    et al. Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J. Lipid Res. 43, 486–494 (2002).

  26. 26.

    et al. Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity. J. Lipid Res. 45, 1660–1665 (2004).

  27. 27.

    & Biliary cholesterol secretion by the twinned sterol half-transporters ABCG5 and ABCG8. J. Clin. Invest. 110, 605–609 (2002).

  28. 28.

    et al. GENOMIZER: an integrated analysis system for genome-wide association data. Hum. Mutat. 27, 583–588 (2006).

  29. 29.

    Pedigree disequilibrium tests for multilocus haplotypes. Genet. Epidemiol. 25, 115–121 (2003).

  30. 30.

    et al. SNP-based analysis of genetic substructure in the German population. Hum. Hered. 62, 20–29 (2006).

Download references

Acknowledgements

The cooperation of all patients, their families and physicians is gratefully acknowledged. The authors gratefully acknowledge the support by the following heads of surgical departments: I. Vogel (Städtisches Krankenhaus Kiel), H. Dittrich (Rendsburg), J. Belz (Husum), R. Quäschling (Eckernförde), H. Shekarriz (Schleswig), V. Mendel (Flensburg), W. Neugebauer (Flensburg), F. Kallinowski (Heide), J. Klima (Niebüll), M. Sailer (Hamburg) and A. Schafmayer (Lüneburg). Special thanks are given to C. Fürstenau, T. Wesse, B. Petersen, L. Bossen, T. Henke, S. Ehlers, A. Dietsch and V. Pucken for technical assistance. This study was supported by the German Ministry of Education and Research through the POPGEN biobank project (01GS0426, 01GR0468), the MediGrid project and the National Genotyping Platforms in Kiel and Cologne and by the German Research Council (Ha 3091/2-1, 4-1, La 997/3-1), Applied Biosystems, Mucosaimmunologie gGmbH and the Medical Faculty Kiel. The SHIP recruitment project is funded by the Federal Ministry of Education and Research (ZZ9603), the Ministry of Cultural Affairs and the Social Ministry of the Federal State of Mecklenburg-West Pomerania. The Chilean study was supported by grants from FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnologógico) (numbers 1040820 (to J.F.M.) and 1030744 (to F.N.)).

Author information

Author notes

    • Stephan Buch
    •  & Clemens Schafmayer

    These authors contributed equally to this work.

Affiliations

  1. First Department of Medicine, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.

    • Stephan Buch
    • , Mario Brosch
    • , Marcus Seeger
    • , Ulrich R Fölsch
    •  & Jochen Hampe
  2. Institute for Clinical Molecular Biology, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.

    • Stephan Buch
    • , Andre Franke
    • , Michael Wittig
    • , Abdou ElSharawy
    •  & Stefan Schreiber
  3. POPGEN Biobank, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.

    • Stephan Buch
    • , Clemens Schafmayer
    • , Huberta von Eller-Eberstein
    • , Birgit Timm
    • , Christine Höll
    • , Michael Krawczak
    •  & Stefan Schreiber
  4. Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.

    • Clemens Schafmayer
    • , Jan Egberts
    • , Fred Fändrich
    •  & Jürgen Tepel
  5. Institute for Community Medicine, University Hospital Greifswald, Walther Rathenau Str. 48, 17487 Greifswald, Germany.

    • Henry Völzke
  6. Cologne Center for Genomics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany.

    • Christian Becker
    • , Christian Kluck
    • , Ingelore Bässmann
    •  & Peter Nürnberg
  7. RZPD German Resource Center for Genome Research, Heubnerweg 6, 14059 Berlin, Germany.

    • Christian Becker
    • , Christian Kluck
    •  & Ingelore Bässmann
  8. Department of Internal Medicine I, University Hospital Bonn, Sigmund Freud-Strasse 25, 53105 Bonn, Germany.

    • Frank Lammert
  9. Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

    • Juan Francisco Miquel
    •  & Flavio Nervi
  10. Institute of Pharmacology, Ernst-Moritz-Arndt University Greifswald, Friedrich Loeffler Str. 23d, 17487 Greifswald, Germany.

    • Dieter Rosskopf
  11. Institute of Medical Statistics and Informatics, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.

    • Tim Lu
    •  & Michael Krawczak
  12. Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany.

    • Peter Nürnberg

Authors

  1. Search for Stephan Buch in:

  2. Search for Clemens Schafmayer in:

  3. Search for Henry Völzke in:

  4. Search for Christian Becker in:

  5. Search for Andre Franke in:

  6. Search for Huberta von Eller-Eberstein in:

  7. Search for Christian Kluck in:

  8. Search for Ingelore Bässmann in:

  9. Search for Mario Brosch in:

  10. Search for Frank Lammert in:

  11. Search for Juan Francisco Miquel in:

  12. Search for Flavio Nervi in:

  13. Search for Michael Wittig in:

  14. Search for Dieter Rosskopf in:

  15. Search for Birgit Timm in:

  16. Search for Christine Höll in:

  17. Search for Marcus Seeger in:

  18. Search for Abdou ElSharawy in:

  19. Search for Tim Lu in:

  20. Search for Jan Egberts in:

  21. Search for Fred Fändrich in:

  22. Search for Ulrich R Fölsch in:

  23. Search for Michael Krawczak in:

  24. Search for Stefan Schreiber in:

  25. Search for Peter Nürnberg in:

  26. Search for Jürgen Tepel in:

  27. Search for Jochen Hampe in:

Contributions

S.B. performed the SNP selection, genotyping and data analysis and prepared the figures and tables; C.S. coordinated the Kiel recruitment, phenotyped patients and helped write the paper; J.E., H.v.E., C.H., B.T. and M.S. recruited patients and helped write the paper. C.B., I.B., C.K. and P.N. performed the chip genotyping and chip data analysis; H.V. and D.R. coordinated the SHIP recruitment and participated in experimental design; J.F.M., F.N. coordinated the recruitment in Chile and participated in experimental design; A.F., M.B., A.E., T.L. and M.W. helped with data analysis and genotyping and F.L., F.F., U.R.F., S.S., P.N. and J.T. helped design the experiment, supported recruitment and helped write the paper. M.K. supervised and performed the statistical analysis and edited the paper. J.H. designed and supervised the experiment, performed data analysis and wrote the manuscript. All authors have revised the manuscript for intellectual content.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jochen Hampe.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–2, Supplementary Tables 1–2, Supplementary Methods, Supplementary Note

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng2101

Further reading Further reading