Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A multistep epigenetic switch enables the stable inheritance of DNA methylation states

Abstract

In many prokaryotes and eukaryotes, DNA methylation at cis-regulatory sequences determines whether gene expression is on or off. Stable inheritance of these expression states is required in bacterial pathogenesis, cancer and developmental pathways1,2. Here we delineate the factors that control the stability of these states by using the agn43 gene in Escherichia coli as a model system. Systematic disruption of this system shows that a functional switch requires the presence of several, rarely occupied, intermediate states that separate the 'on' and 'off' states. Cells that leave the on and off state enter different intermediate states, where there is a strong bias that drives cells back to their original state. The intermediate states therefore act as buffers that prevent back and forth switching. This mechanism of generating multiple states is an alternative to feedback regulation3,4,5, and its general principle should be applicable to the analysis of other epigenetic switches and the design of synthetic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic amplification system for measuring agn43 expression and switching.
Figure 2: Deletions of the agn43 cis-regulatory region.
Figure 3: Deletion mapping of sequences upstream of the agn43 promoter.
Figure 4: Sequences necessary for maintaining the off state.
Figure 5: Molecular model of the steps involved in agn43 on-off switching.
Figure 6: Simulation of agn43 switching.

Similar content being viewed by others

References

  1. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 (Suppl.), 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Low, D.A., Weyand, N.J. & Mahan, M.J. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69, 7197–7204 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Isaacs, F.J., Hasty, J., Cantor, C.R. & Collins, J.J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA 100, 7714–7719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiong, W. & Ferrell, J.E., Jr. A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature 426, 460–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Klose, R.J. & Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci (2006).

  7. Haagmans, W. & van der Woude, M. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol. Microbiol. 35, 877–887 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Owen, P., Caffrey, P. & Josefsson, L.G. Identification and partial characterization of a novel bipartite protein antigen associated with the outer membrane of Escherichia coli. J. Bacteriol. 169, 3770–3777 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Henderson, I.R., Meehan, M. & Owen, P. Antigen 43, a phase-variable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K-12. FEMS Microbiol. Lett. 149, 115–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Henderson, I.R. & Owen, P. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. J. Bacteriol. 181, 2132–2141 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Waldron, D.E., Owen, P. & Dorman, C.J. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol. Microbiol. 44, 509–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Henderson, I.R., Meehan, M. & Owen, P. A novel regulatory mechanism for a novel phase-variable outer membrane protein of Escherichia coli. Adv. Exp. Med. Biol. 412, 349–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Wallecha, A., Munster, V., Correnti, J., Chan, T. & van der Woude, M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338–3347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Owen, P., Meehan, M., de Loughry-Doherty, H. & Henderson, I. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol. Med. Microbiol. 16, 63–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Correnti, J., Munster, V., Chan, T. & Woude, M. Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol. Microbiol. 44, 521–532 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Hasman, H., Schembri, M.A. & Klemm, P. Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. J. Bacteriol. 182, 1089–1095 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kullik, I., Toledano, M.B., Tartaglia, L.A. & Storz, G. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J. Bacteriol. 177, 1275–1284 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wallecha, A., Correnti, J., Munster, V. & van der Woude, M. Phase variation of Ag43 is independent of the oxidation state of OxyR. J. Bacteriol. 185, 2203–2209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stancheva, I., Koller, T. & Sogo, J.M. Asymmetry of Dam remethylation on the leading and lagging arms of plasmid replicative intermediates. EMBO J. 18, 6542–6551 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell, J.L. & Kleckner, N. The rate of Dam-mediated DNA adenine methylation in Escherichia coli. Gene 74, 189–190 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Gerdes, S.Y. et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geanacopoulos, M., Vasmatzis, G., Zhurkin, V.B. & Adhya, S. Gal repressosome contains an antiparallel DNA loop. Nat. Struct. Biol. 8, 432–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Oehler, S., Alberti, S. & Muller-Hill, B. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res. 34, 606–612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun, W. & Hattman, S. Escherichia coli OxyR protein represses the unmethylated bacteriophage Mu mom operon without blocking binding of the transcriptional activator C. Nucleic Acids Res. 24, 4042–4049 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Urig, S. et al. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J. Mol. Biol. 319, 1085–1096 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Hopfield, J.J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hattman, S. Unusual transcriptional and translational regulation of the bacteriophage Mu mom operon. Pharmacol. Ther. 84, 367–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Hernday, A.D., Braaten, B.A. & Low, D.A. The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol. Cell 12, 947–957 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E.A. Oakenfull for logistical assistance; M. Thattai for discussions and assistance with data analysis; M. van der Woude for bacterial strains and plasmids; R. Lutz and H. Bujard for pZ expression plasmids; and A. Becskei, S.V. Godoy and J.M. Pedraza for suggestions and comments. This work was supported by grants from the National Science Foundation (PHY-0548484) and the National Institutes of Health (R01-GM077183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han N Lim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cis-regulatory deletion strains. (PDF 25 kb)

Supplementary Table 1

Bacterial strains and plasmids. (PDF 85 kb)

Supplementary Table 2

Oligonucleotide sequences. (PDF 32 kb)

Supplementary Methods (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, H., van Oudenaarden, A. A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat Genet 39, 269–275 (2007). https://doi.org/10.1038/ng1956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1956

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing