Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDGF signaling specificity is mediated through multiple immediate early genes

Abstract

Growth factor signaling leads to the induction or repression of immediate early genes, but how these genes act collectively as effectors of downstream processes remains unresolved. We have used gene trap–coupled microarray analysis to identify and mutate multiple platelet-derived growth factor (PDGF) intermediate early genes in mice. Mutations in these genes lead to a high frequency of phenotypes that affect the same cell types and processes as those controlled by the PDGF pathway. We conclude that these genes form a network that controls specific processes downstream of PDGF signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in some PDGF targets alter growth rates in mice.
Figure 2: PDGF target genes are necessary for normal vascular development.
Figure 3: PDGF target genes are necessary for kidney glomerular development and function.
Figure 4: PDGF target genes are necessary for normal skeletal morphology of the palate, ribs and vertebrae.
Figure 5: Mutations in PDGF targets affect cell movement.
Figure 6: The skeletal phenotypes of PDGF target genes are additive with the dosage of Pdgfra and with each other.
Figure 7: Craniofacial abnormalities in PDGF target gene mutations are enhanced by Pdgfra heterozygosity.

Similar content being viewed by others

References

  1. Lau, L.F. & Nathans, D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. USA 84, 1182–1186 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rollins, B.J. & Stiles, C.D. Serum-inducible genes. Adv. Cancer Res. 53, 1–32 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Simon, M.A. Receptor tyrosine kinases: specific outcomes from general signals. Cell 103, 13–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Bertotti, A. & Comoglio, P.M. Tyrosine kinase signal specificity: lessons from the HGF receptor. Trends Biochem. Sci. 28, 527–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E.S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Socolovsky, M., Fallon, A.E. & Lodish, H.F. The prolactin receptor rescues EpoR−/− erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood 92, 1491–1496 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Klinghoffer, R.A., Mueting-Nelsen, P.F., Faerman, A., Shani, M. & Soriano, P. The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol. Cell 7, 343–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Betsholtz, C., Karlsson, L. & Lindahl, P. Developmental roles of platelet-derived growth factors. Bioessays 23, 494–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hoch, R. & Soriano, P. PDGF Roles in animal developement. Development 130, 4769–4784 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Soriano, P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124, 2691–2700 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Soriano, P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 8, 1888–1896 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Hellström, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153, 543–553 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lindahl, P. et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 125, 3313–3322 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, W.V., Delrow, J., Corrin, P.D., Frazier, J.P. & Soriano, P. Identification and validation of PDGF transcriptional targets by microarray-coupled gene-trap mutagenesis. Nat. Genet. 36, 304–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Bodnar, J.S. et al. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat. Genet. 30, 110–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Takemoto, M. et al. Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J. 25, 1160–1174 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tallquist, M.D. & Soriano, P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development 130, 507–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Klinghoffer, R.A., Hamilton, T.G., Hoch, R. & Soriano, P. An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev. Cell 2, 103–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Grüneberg, H. & Truslove, G.M. Two closely linked genes in the mouse. Genet. Res. Camb. 1, 69–90 (1960).

    Article  Google Scholar 

  23. Pawson, T. & Saxton, T.M. Signaling networks–do all roads lead to the same genes? Cell 97, 675–678 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kuo, C.T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoch, R.V. & Soriano, P. Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development 133, 663–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I. & Wegner, M. Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 18, 237–250 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. El Mezgueldi, M., Tang, N., Rosenfeld, S.S. & Ostap, E.M. The kinetic mechanism of Myo1e (human myosin-IC). J. Biol. Chem. 277, 21514–21521 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Goutebroze, L., Brault, E., Muchardt, C., Camonis, J. & Thomas, G. Cloning and characterization of SCHIP-1, a novel protein interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol. Cell. Biol. 20, 1699–1712 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, J. & Saba, J.D. Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem. Biophys. Res. Commun. 242, 502–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ame, J.C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays 26, 882–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Ishiguro, H. et al. Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney. Oncogene 20, 5062–5066 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lemmon, M.A., Ferguson, K.M. & Abrams, C.S. Pleckstrin homology domains and the cytoskeleton. FEBS Lett. 513, 71–76 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Corrin and M. Grenley for excellent technical assistance; B. Hoplight for assistance with statistical analysis and our laboratory colleagues S. Parkhurst and M. Van Gilst for critical reading of the manuscript. The Sox10 probe was a gift of M. Wegner (Universität Erlangen). J.S. and C.S.R. were the recipients of postdoctoral fellowships from the US National Institute of General Medical Sciences (GM071158) and from the Leukemia and Lymphoma Society, respectively, and both were supported by a Chromosome and Metabolism Training Grant (CA09657). This work was supported by grant HD24875 from the National Institute of Child Health and Human Development to P.S.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and P.S. conceived and designed the experiments, P.S. generated chimeras and determined viability of mutant strains, C.S.R. focused on Sgpl1−/− mice, J.S. performed characterization of all the strains and analyzed the data and J.S. and P.S. wrote the paper.

Corresponding author

Correspondence to Philippe Soriano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Identification and verification of the insertion sites of the gene trap construct. (PDF 319 kb)

Supplementary Fig. 2

PDGF target genes are expressed in PDGF-dependent tissues. (PDF 305 kb)

Supplementary Fig. 3

Expression of PDGF target genes is altered in PDGFRβ−/− embryos. (PDF 223 kb)

Supplementary Table 1

Gene identification and insertion site. (PDF 92 kb)

Supplementary Table 2

Viability is reduced in mice with mutations in PDGF target genes. (PDF 95 kb)

Supplementary Table 3

Penetrance of skeletal defects in affected bones. (PDF 53 kb)

Supplementary Table 4

Primers used for genotyping mutant mice, for RT-PCR and for semiquantitative PCR. (PDF 60 kb)

Supplementary Note (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmahl, J., Raymond, C. & Soriano, P. PDGF signaling specificity is mediated through multiple immediate early genes. Nat Genet 39, 52–60 (2007). https://doi.org/10.1038/ng1922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing