Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trak1 mutation disrupts GABAA receptor homeostasis in hypertonic mice

A Corrigendum to this article was published on 01 March 2006

Abstract

Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of γ-aminobutyric acid type A (GABAA) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABAA receptors. Our data implicate Trak1 as a crucial regulator of GABAA receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resting-state EMG activity in mouse gastrocnemius muscle.
Figure 2: Inclusion bodies in homozygous hyrt mutants.
Figure 3: Positional cloning of the Trak1 (KIAA1042) gene on mouse chromosome 9.
Figure 4: Tissue expression of mouse Trak1 mRNA in wild-type animals.
Figure 5: Marked reduction in the steady-state levels of GABAA receptors in homozygous hyrt mutants, as revealed by immunofluorescence and protein blotting.
Figure 6: Association between TRAK1 and GABAA receptors.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Wziesendanger, M. Pathophysiology of Muscle Tone (Springer-Verlag, New York, 1972).

    Book  Google Scholar 

  2. Lorish, T.R., Thorsteinsson, G. & Howard, F.M., Jr. Stiff-man syndrome updated. Mayo Clin. Proc. 64, 629–636 (1989).

    Article  CAS  Google Scholar 

  3. Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    Article  CAS  Google Scholar 

  4. Mayer, R.J., Lowe, J., Lennox, G., Doherty, F. & Landon, M. Intermediate filaments and ubiquitin: a new thread in the understanding of chronic neurodegenerative diseases. Prog. Clin. Biol. Res. 317, 809–818 (1989).

    CAS  PubMed  Google Scholar 

  5. Colomer, V. et al. Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum. Mol. Genet. 6, 1519–1525 (1997).

    Article  CAS  Google Scholar 

  6. Li, Y., Chin, L.S., Levey, A.I. & Li, L. Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking. J. Biol. Chem. 277, 28212–28221 (2002).

    Article  CAS  Google Scholar 

  7. Beck, M. et al. Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1. J. Biol. Chem. 277, 30079–30090 (2002).

    Article  CAS  Google Scholar 

  8. Marcora, E., Gowan, K. & Lee, J.E. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc. Natl. Acad. Sci. USA 100, 9578–9583 (2003).

    Article  CAS  Google Scholar 

  9. Kittler, J.T. et al. Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating {gamma}-aminobutyric acid type A receptor membrane trafficking. Proc. Natl. Acad. Sci. USA 101, 12736–12741 (2004).

    Article  CAS  Google Scholar 

  10. Hadano, S. et al. Cloning and characterization of three novel genes, ALS2CR1, ALS2CR2, and ALS2CR3, in the juvenile amyotrophic lateral sclerosis (ALS2) critical region at chromosome 2q33-q34: candidate genes for ALS2. Genomics 71, 200–213 (2001).

    Article  CAS  Google Scholar 

  11. Stowers, R.S., Megeath, L.J., Gorska-Andrzejak, J., Meinertzhagen, I.A. & Schwarz, T.L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002).

    Article  CAS  Google Scholar 

  12. Iyer, S.P., Akimoto, Y. & Hart, G.W. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J. Biol. Chem. 278, 5399–5409 (2003).

    Article  CAS  Google Scholar 

  13. McKernan, R.M. & Whiting, P.J. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci. 19, 139–143 (1996).

    Article  CAS  Google Scholar 

  14. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 (1993).

    Article  CAS  Google Scholar 

  15. Essrich, C., Lorez, M., Benson, J.A., Fritschy, J.M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 (1998).

    Article  CAS  Google Scholar 

  16. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).

    Article  CAS  Google Scholar 

  17. Moss, S.J. & Smart, T.G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250 (2001).

    Article  CAS  Google Scholar 

  18. Barnes, E.M., Jr. Assembly and intracellular trafficking of GABAA receptors. Int. Rev. Neurobiol. 48, 1–29 (2001).

    Article  CAS  Google Scholar 

  19. Kittler, J.T., McAinsh, K. & Moss, S.J. Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol. Neurobiol. 26, 251–268 (2002).

    Article  CAS  Google Scholar 

  20. Fritschy, J.M. & Brunig, I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol. Ther. 98, 299–323 (2003).

    Article  CAS  Google Scholar 

  21. Luscher, B. & Keller, C.A. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol. Ther. 102, 195–221 (2004).

    Article  CAS  Google Scholar 

  22. Bedford, F.K. et al. GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat. Neurosci. 4, 908–916 (2001).

    Article  CAS  Google Scholar 

  23. Brickley, K., Smith, M.J., Beck, M. & Stephenson, F.A. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem. 280, 14723–14732 (2005).

    Article  CAS  Google Scholar 

  24. Gorska-Andrzejak, J. et al. Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J. Comp. Neurol. 463, 372–388 (2003).

    Article  CAS  Google Scholar 

  25. Li, X.J. et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398–402 (1995).

    Article  CAS  Google Scholar 

  26. Block-Galarza, J. et al. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport 8, 2247–2251 (1997).

    Article  CAS  Google Scholar 

  27. Engelender, S. et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 6, 2205–2212 (1997).

    Article  CAS  Google Scholar 

  28. Li, S.H., Gutekunst, C.A., Hersch, S.M. & Li, X.J. Interaction of huntingtin-associated protein with dynactin P150Glued. J. Neurosci. 18, 1261–1269 (1998).

    Article  CAS  Google Scholar 

  29. Gauthier, L.R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  Google Scholar 

  30. Levy, L.M., Dalakas, M.C. & Floeter, M.K. The stiff-person syndrome: an autoimmune disorder affecting neurotransmission of gamma-aminobutyric acid. Ann. Intern. Med. 131, 522–530 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Estes for initial discovery of the mutant; W.B. Dobyns, F. Elsen, G. Ghadge, H.A. Jinnah, U. Kang, O. Lazarov, K. Millen, B. Popko, J.M. Ramirez, R. Roos, K. Sharma, S. Sisodia and M. Utset for observations of mutant mice and insightful discussions; and J. Brainer, Y.M. Chen, E. Chettiath, A. Lindgren, H. Macdonald, L. Moran, S. Rokosik, R. Tai and R. Samples for technical assistance. This work was supported in part by a center grant from the National Institutes of Health's National Center for Research Resources (to M.T.D.) and a Searle Scholarship and Burroughs Wellcome Career Award (to B.T.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce T Lahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

cDNA sequence of mouse Trak1 (also known as KIAA1042). (PDF 16 kb)

Supplementary Table 1

Primer sequences. (PDF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, S., Zhang, L., Forster, M. et al. Trak1 mutation disrupts GABAA receptor homeostasis in hypertonic mice. Nat Genet 38, 245–250 (2006). https://doi.org/10.1038/ng1715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1715

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing