Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal

Abstract

In RNA interference1,2, the RNase-III enzyme Dicer3 processes exogenous double-stranded RNA into small interfering RNAs (siRNAs). siRNAs guide RNA-induced silencing complexes to cleave homologous transcripts, enabling gene-specific knock-down4. In plants, double-stranded RNA is processed into siRNA species of 21 nucleotides (nt) and 24 nt (ref. 5), but, unlike in nematodes6, the Dicer enzymes involved in this processing have not been identified. Additionally, in both plants and nematodes, systemic signals7,8,9,10 with RNA components convey the sequence-specific effects of RNA interference between cells. Here, we describe Arabidopsis thaliana mutants with altered silencing cell-to-cell movement beyond the vasculature. At least three SILENCING MOVEMENT DEFICIENT genes (SMD1, SMD2 and SMD3) are required for trafficking, the extent of which correlates with siRNA levels in the veins. Five alleles defective in synthesis of 21-nt, but not 24-nt, siRNAs carry mutations in Dicer-like 4 (DCL4) that are involved in biogenesis of trans-acting siRNAs11,12. We show that the biogenesis and function of trans-acting siRNA can be genetically uncoupled from a bona fide DCL4-dependent pathway that accounts for RNA interference and for production of the 21-nt siRNA component of the plant cell-to-cell silencing signal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic and molecular characterization of class I, class II and class III mutants.
Figure 2: Phenotypic and molecular analysis of class IV mutants.
Figure 3: The five alleles defining class IV mutants correspond to loss-of-function and missense mutations in DCL4.
Figure 4: An integrated model for short-range and long-range cell-to-cell movement of RNA silencing in plants.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Waterhouse, P.M. & Helliwell, C.A. Exploring plant genomes by RNA-induced gene silencing. Nat. Rev. Genet. 4, 29–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cell extracts. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D.C. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mello, C.C. & Conte, D. Jr. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Palauqui, J.-C., Elmayan, T., Pollien, J.-M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voinnet, O. & Baulcombe, D.C. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D.C. Systemic spread of sequence-specific transgene RNA degradation is initiated by localised introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Winston, W.M., Molodowitch, C. & Hunter, C.P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Gasciolli, V., Mallory, A.C., Bartel, D.P. & Vaucheret, H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15, 1494–1500 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Xie, Z., Allen, E., Wilken, A. & Carrington, J.C. DICER-LIKE4 functions in trans-acting siRNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102, 12984–12989 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang, G., Reinhart, B.J., Bartel, D.P. & Zamore, P.D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bartel, B. & Bartel, D.P. MicroRNAs: at the root of plant development? Plant Physiol. 132, 709–717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. & Poethig, R.S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. & Voinnet, O. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523–4533 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwach, F., Vaistij, F.E., Jones, L. & Baulcombe, D.C. An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol. 138, 1842–1852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allen, E., Xie, Z., Gustafson, A.M. & Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Carmell, M.A., Xuan, Z., Zhang, M.Q. & Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Dalmay, T., Hamilton, A.J., Rudd, S., Angell, S. & Baulcombe, D.C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szittya, G., Molnar, A., Silhavy, D., Hornyik, C. & Burgyan, J. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14, 359–372 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Brodersen and L. Navarro for critical reading of the manuscript, S. MacFarlane for providing TRV-PDS, M. Alioua for technical support and R. Wagner's team for greenhouse work. Research in our laboratory is supported by the Centre National de la Recherche Scientifique and an EMBO Young Investigator award attributed to O.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Voinnet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Northern analysis of SULPHUR mRNA accumulation in the four mutant classes. (PDF 259 kb)

Supplementary Fig. 2

Quantitative RT-PCR (RT-qPCR) analyses of ta-siRNA target accumulation in the five independant alleles of class IV mutant. (PDF 916 kb)

Supplementary Note (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunoyer, P., Himber, C. & Voinnet, O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37, 1356–1360 (2005). https://doi.org/10.1038/ng1675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing