Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynein mutations impair autophagic clearance of aggregate-prone proteins

Abstract

Mutations that affect the dynein motor machinery are sufficient to cause motor neuron disease. It is not known why there are aggregates or inclusions in affected tissues in mice with such mutations and in most forms of human motor neuron disease. Here we identify a new mechanism of inclusion formation by showing that decreased dynein function impairs autophagic clearance of aggregate-prone proteins. We show that mutations of the dynein machinery enhanced the toxicity of the mutation that causes Huntington disease in fly and mouse models. Furthermore, loss of dynein function resulted in premature aggregate formation by mutant huntingtin and increased levels of the autophagosome marker LC3-II in both cell culture and mouse models, compatible with impaired autophagosome-lysosome fusion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical inhibition of dynein function impairs clearance of mutant aggregate-prone proteins.
Figure 2: Dominant-negative inhibition of dynein interferes with clearance of aggregate-prone protein.
Figure 3: Inhibition of dynein function results in decreased autophagosome-lysosome fusion.
Figure 4: Polyglutamine-induced degeneration of adult photoreceptors is enhanced by mutations altering dynein function.
Figure 5: Dynein dysfunction enhances the overall phenotype in a mouse model of Huntington disease.
Figure 6: Dynein dysfunction increases aggregate formation in a mouse model of Huntington disease.

Similar content being viewed by others

References

  1. Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    Article  CAS  Google Scholar 

  2. LaMonte, B.H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).

    Article  CAS  Google Scholar 

  3. Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).

    Article  CAS  Google Scholar 

  4. Goldstein, L.S. & Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71 (2000).

    Article  CAS  Google Scholar 

  5. Cleveland, D.W. From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron 24, 515–520 (1999).

    Article  CAS  Google Scholar 

  6. Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40 (2003).

    Article  CAS  Google Scholar 

  7. Szebenyi, G. et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41–52 (2003).

    Article  CAS  Google Scholar 

  8. Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol. 24, 8195–8209 (2004).

    Article  CAS  Google Scholar 

  9. Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751–762 (1999).

    Article  CAS  Google Scholar 

  10. Leigh, P.N. et al. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 114, 775–788 (1991).

    Article  Google Scholar 

  11. Ravikumar, B., Duden, R. & Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  12. Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N. & Rubinsztein, D.C. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  Google Scholar 

  13. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  Google Scholar 

  14. Mizushima, N., Ohsumi, Y. & Yoshimori, T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421–429 (2002).

    Article  Google Scholar 

  15. Webb, J.L., Ravikumar, B. & Rubinsztein, D.C. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int. J. Biochem. Cell Biol. 36, 2541–2550 (2004).

    Article  CAS  Google Scholar 

  16. Narain, Y., Wyttenbach, A., Rankin, J., Furlong, R.A. & Rubinsztein, D.C. A molecular investigation of true dominance in Huntington's disease. J. Med. Genet. 36, 739–746 (1999).

    Article  CAS  Google Scholar 

  17. Ekstrom, P. & Kanje, M. Inhibition of fast axonal transport by erythro-9-[3-(2-hydroxynonyl)]adenine. J. Neurochem. 43, 1342–1345 (1984).

    Article  CAS  Google Scholar 

  18. Bananis, E., Murray, J.W., Stockert, R.J., Satir, P. & Wolkoff, A.W. Microtubule and motor-dependent endocytic vesicle sorting in vitro. J. Cell Biol. 151, 179–186 (2000).

    Article  CAS  Google Scholar 

  19. Dantuma, N.P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M.G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 18, 538–543 (2000).

    Article  CAS  Google Scholar 

  20. Quintyne, N.J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    Article  CAS  Google Scholar 

  21. Wubbolts, R. et al. Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments. J. Cell Sci. 112, 785–795 (1999).

    CAS  Google Scholar 

  22. Bannai, H., Inoue, T., Nakayama, T., Hattori, M. & Mikoshiba, K. Kinesin dependent, rapid, bi-directional transport of ER sub-compartment in dendrites of hippocampal neurons. J. Cell Sci. 117, 163–175 (2004).

    Article  CAS  Google Scholar 

  23. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  24. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    Article  CAS  Google Scholar 

  25. Jackson, G.R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).

    Article  CAS  Google Scholar 

  26. Schilling, G. et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407 (1999).

    Article  CAS  Google Scholar 

  27. Rogers, D.C. et al. SHIRPA, a protocol for behavioral assessment: validation for longitudinal study of neurological dysfunction in mice. Neurosci. Lett. 306, 89–92 (2001).

    Article  CAS  Google Scholar 

  28. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  Google Scholar 

  29. Taylor, J.P. et al. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12, 749–757 (2003).

    Article  CAS  Google Scholar 

  30. Bauvy, C., Gane, P., Arico, S., Codogno, P. & Ogier-Denis, E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp. Cell Res. 268, 139–149 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Jackson for the fly model of Huntington disease; L. Goldstein for fly motor protein mutants; T. Inoue for DN-KHC; T. Schroer for CC1, CC2 and p50; J. Neefjies for Δ-MK; T. Yoshimori for GFP-LC3 and antibody to LC3; J.P. Luzio for antibody to lgp120; N. Dantuma for HeLa cells stably expressing GFP-UbG76V; J. Newitt, M. Fray, A. Ford and A. Blake for technical assistance; and J. Peters for Loa mice. D.C.R. and S.D.M.B. are grateful for an MRC Programme Grant; MRC Brain Sciences award (D.C.R. and C.J.O.); EU Framework VI (D.C.R.); a Prize Studentship (Z.B.); and The ORS award (Z.B.). D.C.R. is a Wellcome Trust Senior Clinical Fellow, and C.J.O. is a BBSRC Research Development Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C Rubinsztein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Dynein inhibition does not affect the clearance of wild-type α-synuclein. (PDF 33 kb)

Supplementary Fig. 2

Polyglutamine-induced degeneration of adult photoreceptors is enhanced by mutations altering kinesin function. (PDF 10 kb)

Supplementary Fig. 3

Inhibition of dynein decreases the proportion of cells with vimentin-encaged aggresomes. (PDF 9 kb)

Supplementary Fig. 4

p50 overexpression results in a change in morphology of Q74 aggregates. (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, B., Acevedo-Arozena, A., Imarisio, S. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37, 771–776 (2005). https://doi.org/10.1038/ng1591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing