Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chfr is required for tumor suppression and Aurora A regulation

Abstract

Tumorigenesis is a consequence of loss of tumor suppressors and activation of oncogenes. Expression of the mitotic checkpoint protein Chfr is lost in 20–50% of primary tumors and tumor cell lines. To explore whether downregulation of Chfr contributes directly to tumorigenesis, we generated Chfr knockout mice. Chfr-deficient mice are cancer-prone, develop spontaneous tumors and have increased skin tumor incidence after treatment with dimethylbenz(a)anthracene. Chfr deficiency leads to chromosomal instability in embryonic fibroblasts and regulates the mitotic kinase Aurora A, which is frequently upregulated in a variety of tumors. Chfr physically interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo. Collectively, our data suggest that Chfr is a tumor suppressor and ensures chromosomal stability by controlling the expression levels of key mitotic proteins such as Aurora A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of Chfr in mice.
Figure 2: Chfr deficiency increases tumor incidence in mice.
Figure 3: Loss of Chfr leads to chromosome instability.
Figure 4: Chfr negatively regulates expression of Aurora A.
Figure 5: Chfr interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo.
Figure 6: Downregulation of Aurora A decreases the aneuploidy observed in Chfr−/− MEFs.

Similar content being viewed by others

References

  1. Carmena, M. & Earnshaw, W.C. The cellular geography of aurora kinases. Nat. Rev. Mol. Cell. Biol. 4, 842–854 (2003).

    Article  CAS  Google Scholar 

  2. Katayama, H., Brinkley, W.R. & Sen, S. The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev. 22, 451–464 (2003).

    Article  Google Scholar 

  3. Bischoff, J.R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065 (1998).

    Article  CAS  Google Scholar 

  4. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20, 189–193 (1998).

    Article  CAS  Google Scholar 

  5. Littlepage, L.E. et al. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora A. Proc. Natl. Acad. Sci. USA 99, 15440–15445 (2002).

    Article  CAS  Google Scholar 

  6. Cleveland, D.W., Mao, Y. & Sullivan, K.F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).

    Article  CAS  Google Scholar 

  7. Chan, G.K. & Yen, T.J. The mitotic checkpoint: a signaling pathway that allows a single unattached kinetochore to inhibit mitotic exit. Prog. Cell Cycle Res. 5, 431–439 (2003).

    PubMed  Google Scholar 

  8. Lew, D.J. & Burke, D.J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37, 251–282 (2003).

    Article  CAS  Google Scholar 

  9. Cahill, D.P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    Article  CAS  Google Scholar 

  10. Imai, Y., Shiratori, Y., Kato, N., Inoue, T. & Omata, M. Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn. J. Cancer Res. 90, 837–840 (1999).

    Article  CAS  Google Scholar 

  11. Scolnick, D.M. & Halazonetis, T.D. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406, 430–435 (2000).

    Article  CAS  Google Scholar 

  12. Matsusaka, T. & Pines, J. Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. J. Cell Biol. 166, 507–516 (2004).

    Article  CAS  Google Scholar 

  13. Stavridi, E.S. et al. Crystal structure of the FHA domain of the Chfr mitotic checkpoint protein and its complex with tungstate. Structure (Camb) 10, 891–899 (2002).

    Article  CAS  Google Scholar 

  14. Murone, M. & Simanis, V. The fission yeast dma1 gene is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is compromised. EMBO J. 15, 6605–6616 (1996).

    Article  CAS  Google Scholar 

  15. Guertin, D.A., Venkatram, S., Gould, K.L. & McCollum, D. Dma1 prevents mitotic exit and cytokinesis by inhibiting the septation initiation network (SIN). Dev. Cell 3, 779–790 (2002).

    Article  CAS  Google Scholar 

  16. Kang, D., Chen, J., Wong, J. & Fang, G. The checkpoint protein Chfr is a ligase that ubiquitinates PLK1 and inhibits Cdc2 at the G2 to M transition. J. Cell Biol. 156, 249–259 (2002).

    Article  CAS  Google Scholar 

  17. Chaturvedi, P. et al. Chfr regulates a mitotic stress pathway through its RING-finger domain with ubiquitin ligase activity. Cancer Res. 62, 1797–1801 (2002).

    CAS  PubMed  Google Scholar 

  18. Bothos, J., Summers, M.K., Venere, M., Scolnick, D.M. & Halazonetis, T.D. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene 22, 7101–7107 (2003).

    Article  CAS  Google Scholar 

  19. Erson, A.E. & Petty, E.M. CHFR-associated early G2/M checkpoint defects in breast cancer cells. Mol. Carcinog. 39, 26–33 (2004).

    Article  CAS  Google Scholar 

  20. Mizuno, K. et al. Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21, 2328–3233 (2002).

    Article  CAS  Google Scholar 

  21. Shibata, Y. et al. Chfr expression is downregulated by CpG island hypermethylation in esophageal cancer. Carcinogenesis 23, 1695–1699 (2002).

    Article  CAS  Google Scholar 

  22. Corn, P.G. et al. Frequent hypermethylation of the 5′ CpG island of the mitotic stress checkpoint gene Chfr in colorectal and non-small cell lung cancer. Carcinogenesis 24, 47–51 (2003).

    Article  CAS  Google Scholar 

  23. Toyota, M. et al. Epigenetic inactivation of CHFR in human tumors. Proc. Natl. Acad. Sci. USA 100, 7818–7823 (2003).

    Article  CAS  Google Scholar 

  24. Mariatos, G. et al. Inactivating mutations targeting the chfr mitotic checkpoint gene in human lung cancer. Cancer Res. 63, 7185–7189 (2003).

    CAS  PubMed  Google Scholar 

  25. Satoh, A. et al. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res. 63, 8606–8613 (2003).

    CAS  PubMed  Google Scholar 

  26. Ewart-Toland, A. et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat. Genet. 34, 403–412 (2003).

    Article  CAS  Google Scholar 

  27. Sen, S., Zhou, H. & White, R.A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14, 2195–2200 (1997).

    Article  CAS  Google Scholar 

  28. Tanner, M.M. et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin. Cancer Res. 6, 1833–1839 (2000).

    CAS  PubMed  Google Scholar 

  29. Meraldi, P., Honda, R. & Nigg, E.A. Aurora A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    Article  CAS  Google Scholar 

  30. Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A.R. AURORA A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3, 51–62 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Lim, D. Haines, E. Nigg, S. Sen, T. Takahashi, J. Cheng, R. Baer, L. Van Parijs, J. Chien and K. Minn for reagents and help; J. Woods for proofreading the manuscript; and S. Kaufmann and W. Earnshaw for suggestions. This work is supported in part by the Mayo Clinic Cancer Center and the Breast Cancer Research Foundation. J.C. is a recipient of the Department of Defense breast cancer career development award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tumor-free survival of wild-type and Chfr-deficient mice (from 40-80 weeks). (PDF 183 kb)

Supplementary Fig. 2

Spontaneous foci formation in Chfr-/- MEFs. (PDF 216 kb)

Supplementary Fig. 3

Chfr does not ubiquitinate Aurora B in vivo. (PDF 135 kb)

Supplementary Fig. 4

Endogenous Aurora A is ubiquitinated by Chfr. (PDF 382 kb)

Supplementary Table 1

Organs affected by tumors in wild-type and Chfr-deficient mice (40-80 weeks). (PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Minter-Dykhouse, K., Malureanu, L. et al. Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 37, 401–406 (2005). https://doi.org/10.1038/ng1538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing