Abstract

A refined physical map of chromosome 17q21.31 uncovered a 900-kb inversion polymorphism. Chromosomes with the inverted segment in different orientations represent two distinct lineages, H1 and H2, that have diverged for as much as 3 million years and show no evidence of having recombined. The H2 lineage is rare in Africans, almost absent in East Asians but found at a frequency of 20% in Europeans, in whom the haplotype structure is indicative of a history of positive selection. Here we show that the H2 lineage is undergoing positive selection in the Icelandic population, such that carrier females have more children and have higher recombination rates than noncarriers.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

GenBank/EMBL/DDBJ

References

  1. 1.

    et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

  2. 2.

    et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

  3. 3.

    et al. Structural evolution of the BRCA1 genomic region in primates. Genomics 84, 1071–1082 (2004).

  4. 4.

    & Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum. Mol. Genet. 13 Spec No 1 R57–R64 (2004).

  5. 5.

    et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am. J. Hum. Genet. 68, 874–883 (2001).

  6. 6.

    et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum. Mol. Genet. 8, 711–715 (1999).

  7. 7.

    et al. The structure of the tau haplotype in controls and in progressive supranuclear palsy. Hum. Mol. Genet. 13, 1267–1274 (2004).

  8. 8.

    et al. Linkage Disequilibrium and Association of MAPT H1 in Parkinson Disease. Am. J. Hum. Genet. 75, 669–677 (2004).

  9. 9.

    et al. Linkage disequilibrium and haplotype tagging polymorphisms in the Tau H1 haplotype. Neurogenetics 5, 147–155 (2004).

  10. 10.

    et al. The tau H1 haplotype is associated with Parkinson's disease in the Norwegian population. Neurosci. Lett. 322, 83–86 (2002).

  11. 11.

    et al. Molecular evolution and genetics of the Saitohin gene and tau haplotype in Alzheimer's disease and argyrophilic grain disease. J. Neurochem. 89, 179–188 (2004).

  12. 12.

    et al. Tau haplotypes regulate transcription and are associated with Parkinson's disease. Ann. Neurol. 55, 329–334 (2004).

  13. 13.

    & Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am. J. Hum. Genet. 68, 444–456 (2001).

  14. 14.

    Human demographic history: refining the recent African origin model. Curr. Opin. Genet. Dev. 12, 675–682 (2002).

  15. 15.

    The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  16. 16.

    The International HapMap Consortium. Integrating ethics and science in the International HapMap Project. Nat. Rev. Genet. 5, 467–475 (2004).

  17. 17.

    & Signatures of natural selection in the human genome. Nat. Rev. Genet. 4, 99–111 (2003).

  18. 18.

    , , , & A method for detecting recent selection in the human genome from allele age estimates. Genetics 165, 287–297 (2003).

  19. 19.

    et al. ALFRED: An allele frequency database for anthropology. Am. J. Phys. Anthropol. 119, 77–83 (2002).

  20. 20.

    et al. The tau H2 haplotype is almost exclusively Caucasian in origin. Neurosci. Lett. 369, 183–185 (2004).

  21. 21.

    et al. Recombination rate and reproductive success in humans. Nat. Genet. 36, 1203–1206 (2004).

  22. 22.

    et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

  23. 23.

    , , , & Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

  24. 24.

    et al. Evolutionary genomics of inversions in Drosophila pseudoobscura: evidence for epistasis. Proc. Natl. Acad. Sci. USA 100, 8319–8324 (2003).

  25. 25.

    Genetics and the making of Homo sapiens. Nature 422, 849–857 (2003).

  26. 26.

    , & Inversion polymorphisms and nucleotide variability in Drosophila. Genet. Res. 77, 1–8 (2001).

  27. 27.

    et al. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 1055–1061 (2004).

  28. 28.

    , , , & Genetic analysis of lice supports direct contact between modern and archaic humans. PLoS Biol. 2, 340 (2004).

  29. 29.

    & Principles of Human Evolution (Blackwell, Oxford, 2004).

  30. 30.

    et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

  31. 31.

    & Contrasting evolutionary histories of two introns of the duchenne muscular dystrophy gene, Dmd, in humans. Genetics 155, 1855–1864 (2000).

  32. 32.

    , , , & Evidence for positive selection and population structure at the human MAO-A gene. Proc. Natl. Acad. Sci. USA 99, 862–867 (2002).

  33. 33.

    et al. CYP3A variation and the evolution of salt-sensitivity variants. Am. J. Hum. Genet. 75, 1059–1069 (2004).

  34. 34.

    et al. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol. 2, e286 (2004).

  35. 35.

    , , & Protection of privacy by third-party encryption in genetic research in Iceland. Eur. J. Hum. Genet. 8, 739–742 (2000).

  36. 36.

    , & MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5, 150–163 (2004).

  37. 37.

    et al. Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107 (2003).

  38. 38.

    et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003).

  39. 39.

    , & Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

  40. 40.

    & The use of intraallelic variability for testing neutrality and estimating population growth rate. Genetics 158, 865–874 (2001).

  41. 41.

    & SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics 20, 2485–2487 (2004).

  42. 42.

    , & Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila. Genetics 155, 685–698 (2000).

  43. 43.

    , & Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977).

  44. 44.

    , & Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

  45. 45.

    et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann. Neurol. 41, 277–281 (1997).

Download references

Acknowledgements

We thank D. Reich, N. Patterson and D. Donnelly for constructive comments regarding this work.

Author information

Author notes

    • Hreinn Stefansson
    • , Agnar Helgason
    • , Augustine Kong
    •  & Kari Stefansson

    These authors contributed equally to this work.

Affiliations

  1. deCODE Genetics, Sturlugata 8, 101 Reykjavík, Iceland.

    • Hreinn Stefansson
    • , Agnar Helgason
    • , Gudmar Thorleifsson
    • , Valgerdur Steinthorsdottir
    • , Gisli Masson
    • , Adam Baker
    • , Aslaug Jonasdottir
    • , Andres Ingason
    • , Vala G Gudnadottir
    • , Natasa Desnica
    • , Andrew Hicks
    • , Arnaldur Gylfason
    • , Daniel F Gudbjartsson
    • , Gudrun M Jonsdottir
    • , Jesus Sainz
    • , Kari Agnarsson
    • , Birgitta Birgisdottir
    • , Shyamali Ghosh
    • , Adalheidur Olafsdottir
    • , Jean-Baptiste Cazier
    • , Kristleifur Kristjansson
    • , Michael L Frigge
    • , Thorgeir E Thorgeirsson
    • , Jeffrey R Gulcher
    • , Augustine Kong
    •  & Kari Stefansson
  2. Department of Biostatistics and Epidemiology, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

    • John Barnard

Authors

  1. Search for Hreinn Stefansson in:

  2. Search for Agnar Helgason in:

  3. Search for Gudmar Thorleifsson in:

  4. Search for Valgerdur Steinthorsdottir in:

  5. Search for Gisli Masson in:

  6. Search for John Barnard in:

  7. Search for Adam Baker in:

  8. Search for Aslaug Jonasdottir in:

  9. Search for Andres Ingason in:

  10. Search for Vala G Gudnadottir in:

  11. Search for Natasa Desnica in:

  12. Search for Andrew Hicks in:

  13. Search for Arnaldur Gylfason in:

  14. Search for Daniel F Gudbjartsson in:

  15. Search for Gudrun M Jonsdottir in:

  16. Search for Jesus Sainz in:

  17. Search for Kari Agnarsson in:

  18. Search for Birgitta Birgisdottir in:

  19. Search for Shyamali Ghosh in:

  20. Search for Adalheidur Olafsdottir in:

  21. Search for Jean-Baptiste Cazier in:

  22. Search for Kristleifur Kristjansson in:

  23. Search for Michael L Frigge in:

  24. Search for Thorgeir E Thorgeirsson in:

  25. Search for Jeffrey R Gulcher in:

  26. Search for Augustine Kong in:

  27. Search for Kari Stefansson in:

Competing interests

H. Stefansson, A. Helgason, G. Thorleifsson, V. Steinthorsdottir, G. Masson, A. Baker, A. Jonasdottir, A. Ingason, V. G. Gudnadottir, N. Desnica, A. Hicks, A. Gylfason, D. F. Gudbjartsson, G. M. Jonsdottir, J. Sainz, K. Agnarsson, B. Birgisdottir, S. Ghosh, A. Olafsdottir, J.-B. Cazier, K. Kristjansson, M. L. Frigge, T. E. Thorgeirsson, J. R. Gulcher, A. Kong & K. Stefansson own stock or stock options in deCODE Genetics.

Corresponding authors

Correspondence to Augustine Kong or Kari Stefansson.

Supplementary information

PDF files

  1. 1.

    Supplementary Fig. 1

    Genotype analysis on homozygous samples sharing (identical-by-descent) over the 17q21.31 locus.

  2. 2.

    Supplementary Fig. 2

    The relative copy number for H1D1 and H1D3 variants compared to H2 variants estimated by gene dose analysis at three loci.

  3. 3.

    Supplementary Fig. 3

    Five chromosomal variants with considerable variation in size at the inverted locus on 17q21.31.

  4. 4.

    Supplementary Fig. 4

    Positive correlation is found between copy numbers of the 5′ end of the NSF gene per sample.

  5. 5.

    Supplementary Fig. 5

    A sliding window analysis of sequence divergence in 5 kb sequence segments inside the inverted region of a 77 kb fragment that spans much of intron 1 and 2 from the MAPT gene from 44.444005-44.520949 Mb in the H1 orientation in Build 34.

  6. 6.

    Supplementary Fig. 6

    LD between SNP markers spanning the inversion at 17q21.31.

  7. 7.

    Supplementary Fig. 7

    The estimate frequency of H2 for females and males who have 0, 1, 2, 3, 4 and 5 or more children.

  8. 8.

    Supplementary Table 1

    Available sequences and contigs from the RP11 library mapping to 17q21.31.

  9. 9.

    Supplementary Table 2

    Test for the impact of selection of H2 chromosomes in the Utah sample using the mutational diversity of five microsatellites.

  10. 10.

    Supplementary Table 3

    The distribution of the number of children for 82,992 Icelandic males and for 79,811 Icelandic females born between 1925 and 1965.

  11. 11.

    Supplementary Table 4

    Results from multiple regression analyses for a cohort of 16959 females and 12178 males born between 1925 and 1965.

  12. 12.

    Supplementary Table 5

    Primer sequences for markers shown in Figures 1 and 3.

  13. 13.

    Supplementary Table 6

    Difference in mutation rate for microsatellites on H1 and H2 backgrounds.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng1508

Further reading Further reading