
A sound epistemological foundation for biological inquiry comes, in
part, from application of valid statistical procedures. This tenet is
widely appreciated by scientists studying the new realm of high-
dimensional biology, or ‘omic’ research, which involves multiplicity at
unprecedented scales. Many papers aimed at the high-dimensional
biology community describe the development or application of statis-
tical techniques. The validity of many of these is questionable, and a
shared understanding about the epistemological foundations of the
statistical methods themselves seems to be lacking. Here we offer a
framework in which the epistemological foundation of proposed sta-
tistical methods can be evaluated.

The challenge we face
High-dimensional biology (HDB) encompasses the ‘omic’ technolo-
gies1 and can involve thousands of genetic polymorphisms, sequences,
expression levels, protein measurements or combination thereof. How
do we derive knowledge about the validity of statistical methods for
HDB? A shared understanding regarding this second-order epistemo-
logical question seems to be lacking in the HDB community. Although
our comments are applicable to HDB overall, we emphasize microar-
rays, where the need is acute. “The field of expression data analysis is
particularly active with novel analysis strategies and tools being pub-
lished weekly” (ref. 2; Fig. 1), and the value of many of these methods
is questionable3. Some results produced by using these methods are so
anomalous that a breed of ‘forensic’ statisticians4,5, who doggedly
detect and correct other HDB investigators’ prominent mistakes, has
been created.

Here we offer a ‘meta-methodology’ and framework in which to
evaluate epistemological foundations of proposed statistical methods.
On the basis of this framework, we consider that many statistical
methods offered to the HDB community do not have an adequate
epistemological foundation. We hope the framework will help
methodologists to develop robust methods and help applied investiga-
tors to evaluate whether statistical methods are valid.
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Our vantage point: from samples to populations
We study samples and data to understand populations and nature.
From this perspective (Table 1), the sampling units are cases (e.g.,
mice) and not genes. Although this may seem obvious, methods in
which inferences about differences in gene expression between popu-
lations are made by comparing observed sample differences with an
estimated null distribution of differences based on technical rather
than biological replicates have been proposed6. Measurement error
should not be confused with true biological variability among cases in
a population. This conflates the standard error of measurement with
the standard error of the sample statistic; it takes observations from
Level I (Table 1), makes an inference to Level II and conflates this
inference with the desired inference to Level III. This is one example of
a common class of mistakes that can be avoided by considering the
sample-to-population perspective.

What is validity?
Assessing validity requires explicit standards for evaluating methods.
This requires an explanation of what a method is supposed to do or
what properties it is supposed to have. A full description of various
properties that a statistical procedure should have is beyond our scope.
There is inherent subjectivity in choosing which properties are of
interest or desired, but once criteria are chosen, methods can and
should be evaluated objectively. Validity can be relative and situation-
specific. This is noteworthy in considering the merit of a newly pro-
posed procedure when one or more procedures already exist for
similar purposes. In such cases, it may be important to ask not only
whether the new method is valid in an absolute sense, but whether and
under what circumstances it confers any relative advantage with
respect to the chosen properties. Table 2 outlines four common statis-
tical activities in HDB, how validity might be defined in each and spe-
cial issues with their application to HDB.

The search for proof: deduction
A proof is a logical argument proceeding from axioms to eventual con-
clusion through an ordered deductive process. Its certainty stems from
the deductive nature by which each step follows from an earlier step.
As things proven and methods of their proof have become more com-
plex, certainty is not always easy to achieve and what is obvious to one
person may not be to another7. The key structure that we should seek
in a proof that a method has a certain property has three parts: precise
formulation of axioms, statement of the method’s purported property
and logical steps connecting the two.
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Proofs begin with axioms or postulates (i.e., assumptions) and are
valid only when the assumptions hold. The proof ’s practical conclu-
sions may hold across broader circumstances, but additional evidence
is required to support this. Therefore, it is important to state and
appreciate the assumptions underlying any method’s validity. This
allows assessment of whether those assumptions are plausible and, if
not, what the effect of violations might be.

Many methods assume that residuals from some fitted model are
normally distributed. It is unclear, however, whether transcriptomic or
proteomic data are normally distributed even after the familiar log
transformation. For least squares–based procedures, the central limit
theorem guarantees robustness with large sample sizes. But HDB sam-
ple sizes are typically small. Some analyses allow the enormous num-
bers of measurements to compensate for the few cases8, but the extent
to which such procedures compensate for robustness to departures
from distributional assumptions is unclear.

An equally important Gauss-Markov assumption9, homoscedas-
ticity (homogeneity of variance), is crucial for most least
squares–based tests. Violation can greatly affect power and type 1
error levels. Here, it is important to highlight a common misconcep-
tion about nonparametric statistics. Nonparametric statistics,
including permutation tests, are distribution-free. Their validity
does not depend on any particular data distribution. But distribu-
tion-free is not assumption-free. Many HDB methodologists use
nonparametric, particularly permutation or bootstrap, testing as
though it eliminates all assumptions and is universally valid. This is
not so10,11. For example, conventional permutation tests assume
homoscedasticity and can be invalidated by outliers10. Moreover,
conducting inference for one’s method by permutation, even if this
yields correct type 1 error rates, may not be optimal for all purposes.
For example, in some transcriptomic studies, investigators may pri-
marily wish to rank genes by their ‘importance’ or the magnitude of
their effect. In such cases, permutation tests may yield valid type 1
error rates but may be outperformed by parametric tests in terms of
ranking genes by magnitude of effect12.

Another common assumption about statistical techniques is that
certain elements of the data are independent9, and violations can
markedly invalidate tests. This includes permutation and bootstrap
tests, unless the dependency is built into the resampling process, as
some have done13. Thus, we should ask whether dependency is accom-
modated in our methods. A popular approach in microarray data is to
calculate a test statistic for each gene and then permute the data multi-
ple times, each time recalculating and recording the test statistics,
thereby creating a pseudonull distribution against which observed test
statistics can be compared for statistical significance. If one uses only
the distribution of test statistics in each gene, then, given the typically
small samples, there are insufficient possible permutations and the
distribution is coarse and minimally useful14,15. Some investigators16

pool the permutation-based test statistics across all genes to create a
pseudonull distribution with lesser coarseness. But this approach
treats all genes as independent, which is not the case. Therefore, P val-
ues derived from such permutations may not be strictly valid17.

Statements about proposed approaches can be supported by refer-
ring to proofs already published. For example, those proposing a par-
ticular mixed model approach18 correctly realized that they did not
need to prove that (under certain conditions) this model is asymptoti-
cally valid for frequentist testing, because this has already been shown.
They needed only to cite those references. Recognizing the limits of
what has been previously shown is important, and mixed models
exemplify an acute concern in HDB. Certain mixed model tests are
asymptotically valid but can be invalid under some circumstances with
samples as small as 20 per group19, far larger than those typically used
in HDB. Thus, validating methods with small samples when their
validity relies on asymptotic approximations is vital.

Finally, we note that mathematical description of some process is
not equivalent to proof that the result of the process has any particular
properties. Methodological papers in HDB often present new algo-
rithms with exquisite mathematical precision. Those who are less
comfortable with mathematics may mistake this for proof. Writing an
equation may define something, but it does not prove anything.

The proof of the pudding is in the eating: induction
In induction, there is no proof that a method has certain properties.
Instead we rely on extra-logical information20,21. If a method performs
in a particular manner across many instances, we assume it will proba-
bly do so in the future. We therefore seek to implement methods in sit-
uations that can provide feedback about their performance22.
Simulation and plasmode studies (below) are two such methods.

Many methodologists use simulation to examine methods for
HDB8,14. Because the data are simulated, one knows the right answers
and can unequivocally evaluate the correspondence between the
underlying ‘truth’ and estimates, conclusions or predictions derived
with the method. Moreover, once a simulation is programmed, one
can generate and analyze many data sets and, thereby, observe
expected performance across many studies. Furthermore, one can
manipulate many factors in the experiment (e.g., sample size, mea-
surement reliability, effect magnitude) and observe performance as a
function. There are two key challenges to HDB simulation: computa-
tional demand and representativeness.

Regarding computational demand, consider that we need to analyze
many variables (e.g., genes) and may use permutation tests that neces-
sitate repeating analyses many times per data set. This demand is com-
pounded when we assess method performance across many
conditions and wish to work at α levels around 10–4 or less, necessitat-
ing on the order of 106 simulations per condition to accurately esti-
mate (i.e., with 95% confidence to be within 20% of the expected
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Figure 1 Growth of microarray and microarray methodology literature listed in
PubMed from 1995 to 2003. The category ‘all microarray papers’ includes
those found by searching PubMed for microarray* OR ‘gene expression
profiling’. The category ‘statistical microarray papers’ includes those found by
searching PubMed for ‘statistical method*’ OR ‘statistical techniq*’ OR
‘statistical approach*” AND microarray* OR ‘gene expression profiling’.
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Table 2 Four common statistical activities in HDB and issues in the validation of their methods

Statistical
activity Description Criteria for evaluating validity Comments Special issues in HDB

Inference The process of making decisions or Family-wise error rate control; Distributional and other assumptions Small sample sizes offer little power,
drawing conclusions about the truth false discovery rate control; about the nature of the data especially if corrected for multiple
or falsity of hypotheses by applying proportion of false positive control; are usually paramount. testing. Greater power and 
frequentist, Bayesian or other paradigms43,44. power (type II error minimization); flexibility might be obtained by

total error minimization45,46. borrowing information across
genes15, but doing so often makes
assumptions about exchangeability
across or independence of genes
that may not be explicit or valid17.

Estimation Computing sample statistics Unbiasedness; minimum mean HDB offers especially rich ground Estimators that are ordinarily
(e.g., relative change in gene expression) square error; efficiency; sufficiency; for modern ‘information-borrowing’ unbiased can be markedly 
on observed data as estimates of consistency. techniques that can radically improve biased when used only to estimate
corresponding unobserved population estimation when many estimates significant effects in genome-wide
parameters (e.g., the relative change in gene are simultaneously made on small contexts47.
expression in the population), called estimands. samples15,44.

Prediction In HDB, typically entails predicting status Minimizing and accurately estimating The predictive validity of a prediction The seemingly simple problem of
(unsupervised of some categorical variable (e.g., malignant expected prediction error probabilities; rule developed in a single data set estimating predictive accuracy on a
classification) versus benign) on the basis of observed variables positive predictive value; area under should not be confused with the single data set is not so simple in

(e.g., proteomic measurements). receiver operating curve. validity of a general method for HDB. HDB methodologists have 
developing prediction rules markedly overestimated predictive 
on data sets. accuracy by using invalid methods for

estimating predictive accuracy of
derived predictive rules4.

Classification The construction of classification schemes The extent to which they yield Classifications do not exist; Some authors have, in our opinion, 
(supervised and assignment of objects to classes classifications that are replicable we create them. Thus, there is mistakenly resampled across genes
classification) within schemes. In transcriptomics, across multiple samplings from no null hypothesis to test, when trying to assess stability of

classification often occurs through some a population beyond chance no independent reality to compare cluster solutions 48, which makes little
form of cluster analysis and is applied to the levels48. Although a replicable with a derived classification sense from the samples-to-population
genes (variables) as opposed to the cases. classification is not necessarily —no right answer. Some49 perspective shown in Table1.

useful, a useful classification disagree on this point and state
that characterizes some aspect that “the null hypothesis that is 
of the population must be being tested here is that of
replicable35. no structure in the data.” Exactly

what ‘no structure’ means is not
clear, nor can it be taken to be
equivalent to ‘no classification.’

P E R S P E C T I V E

value) type 1 error rates. Simulating at such low α levels is important,
because a method based on asymptotic approximations may perform
well at higher α levels but have inflated type 1 error rates at lower α
levels. In such situations, even a quick analysis for an individual vari-
able becomes a computational behemoth at the level of the simulation
study. Good programming, ever-increasing computational power and
advances in simulation methodology (e.g., importance sampling)23

are, therefore, essential.
The second challenge entails simulating data that reasonably repre-

sent actual HDB data, despite limited knowledge about the distribu-
tion of individual mRNA or protein levels and the transcriptome- or
proteome-wide covariance structure. Consequently, some investiga-

tors believe that HDB simulation studies are not worthwhile. This
extreme and dismissive skepticism is ill-founded.

First, although we have limited knowledge of the key variables’ dis-
tributions, this is not unique to HDB24, and we can learn about such
distributions by observing real data. We rarely know unequivocally the
distribution of biological variables, yet we are able to develop and eval-
uate statistical tests for these. One can simulate data from an extraor-
dinarily broad variety of distributions25. If tests perform well across
this variety, we can be relatively confident of their validity. Moreover, if
we identify specific ‘pathological’ distributions for which our statisti-
cal procedures perform poorly, then by using them in practice, we can
attempt to ascertain whether the data have such distributions.

NATURE GENETICS VOLUME 36 | NUMBER 9 | SEPTEMBER 2004 945

Table 1  Iconic representation of levels of observation and inference

Level I Level II Level III

Aspects of variables studied Measurements of specific variables on cases True values of specific variables on cases Population distribution of variables

Units of observation Cases/samples Cases/samples Population/universe

Subject of study Data Data Nature

Conceptual description Second-order shadows Shadows Reality

We observe imperfect measurements of variables from specific objects drawn from larger populations, and these observations form our base data. Using these data, we wish to
make inferences from these imperfect measurements to the real variables they represent and then from the sample cases to the population they were sampled from. Borrowing the
language of Plato’s Allegory of the Cave, we can view the data at level II as manifestations of a random sampling process and ‘shadows’ of the population-level reality we are trying
to model. Similarly, we can view the data at level III as manifestations of our inevitably error-prone measurement processes and ‘second-order shadows’ of the actual sample
values. An unfortunately common mistake in HDB is to confuse the variability among measurements of the same object with variability among objects sampled from a population
and, thereby, mistake a procedure that can make valid inferences from level I to level II for one that makes inferences to level III.
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Regarding correlation among genes, it is easy to simulate a few, even
non-normal, correlated variables26. In HDB, the challenge is simulat-
ing many correlated variables. Using block diagonal correlation matri-
ces14 oversimplifies the situation. ‘Random’ correlation matrices27 are
unlikely to reflect reality. Alternatively, one can use real data to identify
a correlation structure from which to simulate. This can be done by
using the observed expression values and simulating other values (e.g.,
group assignments, quantitative outcomes) in hypothetical experi-
ments or by generating simulated expression values from a correlation
matrix that is based in some way on the observed matrix28 using fac-
toring procedures. Exactly how to do this remains to be elucidated, but
the challenge seems to be surmountable. Investigators are addressing
this challenge29–31, and several microarray data simulators exist (refs.
32–34 and the gene expression data simulator at http://bioinformatics.
upmc.edu/GE2/index.html).

Another challenge in simulation is to make the covariance struc-
ture ‘gridable’, meaning that the theoretically possible space of a para-
meter set can be divided into a reasonably small set of mutually
exclusive and exhaustive adjacent regions. Typically, simulation is
used when we are unable to derive a method’s properties analytically.
Therefore, it is usually desirable to evaluate performance across the
plausible range of a key factor. If that factor is the correlation between
two variables, one can easily simulate along the possible range (–1,1)
at suitably small adjacent intervals (a grid). With multiple variables
under study, the infinite number of possible correlation matrices is
not obviously represented by a simple continuum, and it is not obvi-
ous how to establish a reasonably sized grid. But if one could extract
the important information from a matrix in a few summary metrics,
such as some function of eigenvalues, it might be possible to reduce
the dimensionality of the problem and make it ‘gridable’. This is an
important topic for future research.

A plasmode is a real data set whose true structure is known35. As in
simulations, the right answer is known a priori, allowing the inductive
process to proceed. Plasmodes may represent actual experimental data
sets better than simulations do. In transcriptomics, the most common
type of plasmode is the ‘spike-in’ study. For example, real cases from
one population are randomly assigned to two groups and then known
quantities of mRNA for specific genes (different known quantities for
each group) are added to the mRNA samples. In this situation, the null
hypothesis of no differential expression is known to be true for all
genes except those that were spiked, and the null hypothesis is known
to be false for all those that are spiked. One can then evaluate a
method’s ability to recover the truth.

Plasmode studies have great merit and are being used15,36, but there
is a need for greater plurality. Because statistical science deals with ran-
dom variables, we cannot be certain that a method’s performance in
one data set will carry over to another. We can only make statements
about expected performance, and estimating expected or average per-
formance well requires multiple realizations. Analysis of a single plas-
mode is minimally compelling. Because plasmode creation can be
expensive and laborious, it is difficult for investigators to create many.
Additionally, although plasmodes might offer better representations of
experimental data sets, there is no guarantee. For example, in spike-in
studies, it is unclear how many genes should be spiked or what the dis-
tribution of spike-created effects should be to reflect reality.

Combined modes
One can also combine the approaches above15. When two or more
modes yield consistent conclusions, confidence is strengthened. One
could also creatively combine deduction and induction. For example,
suppose there were two alternative inferential tests, A and B, which
could be proven deductively to have the correct type 1 error rate under
the circumstances of interest. If one applied the tests to multiple real
data sets and consistently found that test A rejected more null
hypotheses than did test B, one could reasonably conclude that test A
was more powerful than test B. This makes sense only if both tests have
correct type 1 error rates.

Data sets of unknown nature: circular reasoning
Authors often purport to demonstrate a new method’s validity in HDB
by applying it to one real data set of unknown nature. A new method is
applied to a data set, and a new interesting finding is reported; for
example, a gene previously not known to be involved in disease X is
found to be related to the disease, and the authors believe that the find-
ing shows their method’s value. The catch is this: if the gene was previ-
ously not known to be involved in disease X, how do the authors know
that they got the right answer? If they do not know that the answer is
right, how do they know that this validates their method? If they do
not know that their method is valid, how do they know that they got
the right answer? We are in a loop (circular argument). Illustration of a
method’s use is not demonstration of its value. Illustration with single
data sets of unknown nature, though interesting, is not a sound episte-
mological foundation for method development.

Where to from here?
We offer four suggestions for progress:

(i) Vigorous solicitation of rigorous substantiation. Guidelines have
been offered or requested for genome scan inference37, transcriptomic
data storage38, specimen preparation and data collection39, and result
confirmation40. We agree that these should remain guidelines and not
rules41. Such guidelines help evaluate evidential strength of claims. But
there are no guidelines for presentation and evaluation of method-
ological developments22. Thus, we offer the guidelines in Box 1 to be
used in evaluating proffered methods.

(ii) ‘Meta-methods’. For methodologists to strive for high standards
of rigor, they must have the tools to do so. An important area for new
research is HDB ‘meta-methodology’, methodological research about
how to do methodological research. Such second-order methodologi-
cal research could address how to simulate realistic data and how to
meet computational demands. Public plasmode database archives
would also be valuable.

(iii) Qualified claims? A risk in requesting more rigorous evidential
support for new HDB statistical techniques is that if such requests
became inflexible demands, progress might be slowed. ‘Omic’ sciences
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Box 1  Suggested guidelines for promoting a sound
epistemological foundation for new statistical methodology
in HDB

1. State exactly what the method is intended to do or what properties it is
intended to have in objectively testable terms.

2. State the assumptions under which these properties or expected
outcomes should occur.

3. Provide evidence that the method has the claimed performance or
properties from simulation studies, analytic proofs and/or multiple
plasmode data analyses.

4. In the absence of compelling evidence as described in point 3, state
clearly that the claimed properties are conjectured and await
substantiation.

5. Where an alternative method already exists, compare the properties of
the new method with those of the existing method, or, at minimum,
note that an alternative exists, conjecture why the new method 
may be superior in some situations and suggest future testing of
the conjecture.

©
20

04
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
g

en
et

ic
s



P E R S P E C T I V E

move fast, and investigators need new methodology. Therefore,
although we hope methodologists publish new methods with the most
rigorous validation possible, public scientific conjecture has an illus-
trious history, and it is in the interests of scientific progress and intel-
lectual freedom that compelling methods, though merely conjectured
to be useful, be published. But, as Bernoulli wrote, “In our judgments
we must beware lest we attribute to things more than is fitting to
attribute…and lest we foist this more probable thing upon other peo-
ple as something absolutely certain”42. Thus, it is reasonable to publish
methods without complete evidence regarding their properties, pro-
vided we follow Bernoulli: state the claims we are making for our prof-
fered methods and whether such claims are supported by simulations,
proofs, plasmode analyses or merely conjecture.

(iv) Caveat emptor. Ultimately, we offer the ancient wisdom, “caveat
emptor”. Statistical methods are, by definition, probabilistic, and in
using them, we will err at times. But we should have the opportunity to
proceed knowing how error-prone we will be, and we appeal to
methodologists to provide that knowledge.
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