Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peroxisome assembly factor–2, a putative ATPase cloned by functional complementation on a peroxisome–deficient mammalian cell mutant

Abstract

Rat peroxisome assembly factor–2 (PAF–2) cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP92, using transient transfection assay. This cDNA encodes a 978–amino acid protein with two putative ATP–binding sites. PAF–2 is a member of a putative ATPase family, including two yeast gene products essential for peroxisome assembly. A stable transformant of ZP92 with the cDNA was morphologically and biochemically restored for peroxisome biogenesis. Fibroblasts derived from patients deficient in peroxisome biogenesis (complementation group C) were also complemented with PAF–2 cDNA, indicating that PAF–2 is a strong candidate for the pathogenic gene of group C peroxisome deficiency.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. van den Bosch, H., Schutgens, R.B.H., Wanders, R.J.A, Tager, J.M. Biochemistry of peroxisomes. A. Rev. Biochem. 61, 157–197 (1992).

    Article  CAS  Google Scholar 

  2. Kunau, W.-H. et al. Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 75, 209–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Subramani, S., Protein import into peroxisomes and biogenesis of the organelle. A. Rev. Cell Biol. 9, 445–478 (1993).

    Article  CAS  Google Scholar 

  4. Schutgens, R.B.H., Heymans, H.S.A., Wanders, R.J.A., van den Bosch, H. & Tager, J.M. Peroxisomal disorders: a newly recognized group of genetic diseases. Eur. J. Pediatr. 144, 430–440 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Shimozawa, N. et al. Standardization of complementation grouping of peroxisome-deficient disorders and the second Zellweger patient with peroxisomal assembly factor-1 (PAF-1) defect. Am. J. hum. Genet. 52, 843–844 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsukamoto, T., Yokota, S. & Fujiki, Y. Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J. Cell Biol. 110, 651–660 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Shimozawa, N., Tsukamoto, T., Suzuki, Y., Orii, T. & Fujiki, Y. Animal cell mutants represent two complementation groups of peroxisome-defective Zellweger syndrome. J. clin. Invest. 90, 1864–1870 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsukamoto, T., Miura, S. & Fujiki, Y. Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350, 77–81 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Shimozawa, N. et al. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255, 1132–1134 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Tsukamato, T., Shimozawa, N., & Fujiki, Y. Peroxisome assembly factor 1: Nonsense mutation in a peroxisome-deficient Chinese hamster ovary cell mutant and deletion analysis. Molec. cell. Biol. 14, 5458–6465 (1994).

    Article  Google Scholar 

  11. Confalonieri, F., & Duguet, M.,A 200-amino acid ATPase module in search of a basic function. BioEssays 17, 639–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Kolter, K.J., & Brownstein, M.J. Use of a cDNA clone to identify a supposed precursor protein containing valosin. Nature 325, 542–545 (1987).

    Article  Google Scholar 

  13. Peters, J.-M., Walsh, M.J., & Franke, W.W. An abundant and ubiquitous homooligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J. 9, 1757–1767 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Födlich, K.-U. et al. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J. Cell Biol. 114, 443–453 (1991).

    Article  Google Scholar 

  15. Wilson, D.W., et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Nelbock, P., Dillon, P.J., Perkins, A., & Rosen, C.A. A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 248, 1650–1653 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Thorsness, P.E., White, K.H. & Fox, T.D. Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Molec. cell. Biol. 13, 5418–5426 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakai, T., Yasuhara, T., Fujiki, Y. & Ohashi, A. Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Molec. cell. Biol. 15, 4441–4452 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubiel, W., Ferrell, K., Pratt, G. & Rechsteiner, M. Subunit 4 of the 26 S protease is a member of a novel eukaryotic ATPase family. J. biol. Chem. 267, 22699–22702 (1992).

    CAS  PubMed  Google Scholar 

  20. Tomoyasu, T., et al. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175, 1344–1351 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spong, A.R., & Subramani, S., Cloning and characterization of PAS5: a gene required for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J. Cell Biol. 123, 535–548 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Voom-Brouwer, T., van der Leij, I., Hemrika, W., Distel, B. & Tabak, H.F. Sequence of the PAS8 gene, the product of which is essential for biogenesis of peroxisomes in Saccharomyces cerevisiae. Biochim. biophys. Acta 1216, 325–328 (1993).

    Article  Google Scholar 

  23. Nuttley, W.M., et al. PAY4, a gene required for peroxisome assembly in the yeast Yarrowia lipolyttea, encodes a novel member of a family of putative ATPases. J. biol. Chem. 269, 556–566 (1994).

    CAS  PubMed  Google Scholar 

  24. Erdmann, R., et al. PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPase. Cell 64, 499–510 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Heyman, J.A., Monosov, E. & Subramani, S., Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. J. Cell Biol. 127, 1259–1273 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Walker, J.E., Saraste, M., Runswick, M.J., & Gay, N.J., Distanlty related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–981 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chin, D.T., Goff, S.A., Webster, T., Smith, T. & Goldberg, A.L. Sequence of the Ion gene in Escherichia coli. J. biol. Chem. 263, 11718–11728 (1988).

    CAS  PubMed  Google Scholar 

  28. Ogawa, H., Konishi, K., Takata, Y., Nakashima, H. & Fujioka, M. Rat glycine methyrtransferase. Complete amino acid sequence deduced from a cDNA clone and characterization of the genomic DNA. Eur. J. Biochem. 168, 141–151 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Miyazawa, S. et al. Complete nucleotide sequence of cDNA and predicted amino acid sequence of rat acyl-CoA oxidase. J. biol. Chem. 262, 8131–8137 (1987).

    CAS  PubMed  Google Scholar 

  30. Osumi, T. et al. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. biophys. Res. Commun. 181, 947–954 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Hijikata, M., Ishii, N., Kagamiyama, H., Osumi, T. & Hashimoto, T. Structural analysis of cDNA for rat peroxisomal 3-ketoacyl-CoA thiolase. J. biol. Chem. 262, 8151–8158 (1987).

    CAS  PubMed  Google Scholar 

  32. Zoeller, R.A., Morand, O.H. & Raetz, C.R.H. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. biol. Chem. 263, 11590–11596 (1988).

    CAS  PubMed  Google Scholar 

  33. Morand, O.H., Allen, L.-A.H, Zoeller, R.A. & Raetz, C.R.H. A rapid selection for animal cell mutants with defective peroxisomes. Biochim. biophys. Acta 1034, 132–141 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Saraste, M., Sibbald, P.R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends. Biochem. Sci. 15, 430–434 (1990).

    Article  PubMed  Google Scholar 

  35. Bordo, D., & Argos, P. Suggestions for “safe” residue substitutions in site-directed mutagenesis. J. Molec. Biol. 217, 721–729 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Gordon, C., McGurk, G., Dillon, P., Rosen, C. & Hastie, N.D. Defective mitosis due to a mutation in the gene for a fisson yeast 26S protease subunit. Nature 366, 355–357 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Ghislain, M., Udvardy, A., & Mann, C.S. cerevisiae26S protease mutants arrest cell division in G2/metaphase. Nature 366, 358–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Dodt, G. et al. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genet. 9, 115–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Wendland, M. & Subramani, S. Presence of cytoplasmic factors functional in peroxisomal protein import implicates organelle-associated defects in several human peroxisomal disorders. J. clin. Invest. 92, 2462–2468 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krause, T., Kunau, W.-H. & Erdmann, R. Effect of site-directed mutagenesis of conserved lysine residues upon Pas1 protein function in peroxisome biogenesis. Yeast 10, 1613–1620 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Imanaka, T., Small, G.M. & Lazarow, R.B. Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol. 105, 2915–2922 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Wendland, M., & Subramani, S. Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol. 120, 675–685 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Motec. cell. Biol. 7, 2745–2752 (1987).

    CAS  Google Scholar 

  44. Takabe, Y. et al. SRα promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Molec. cell. Biol. 8, 466–472 (1988).

    Article  Google Scholar 

  45. Okayama, H. & Berg, P. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Molec. cell. Biol. 3, 280–289 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miura, S. et al. Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. J. biol. Chem. 267, 14405–14411 (1992).

    CAS  PubMed  Google Scholar 

  47. Miyazawa, S. et al. Peroxisome targeting signal of rat liver acyl-Coenzyme A oxidase resides at the carboxy terminus. Molec. cell. Biol. 9, 83–91 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shimozawa, N., Suzuki, Y., Orii, T., Yokota, S. & Hashimoto, T. . Biochemical and morphologic aspects of peroxisomes in the human rectal mucosa: diagnosis of Zellweger syndrome simplified by rectal biopsy. Pediatr. Res. 24, 723–727 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukamoto, T., Miura, S., Nakai, T. et al. Peroxisome assembly factor–2, a putative ATPase cloned by functional complementation on a peroxisome–deficient mammalian cell mutant. Nat Genet 11, 395–401 (1995). https://doi.org/10.1038/ng1295-395

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing