Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells

Abstract

The mouse represents an excellent model system for the study of genetic deafness in humans. Many mouse deafness mutants have been identified and the anatomy of the mouse and human ear is similar. Here we report the use of a positional cloning approach to identify the gene encoded by the mouse recessive deafness mutation, Snell's waltzer (sv). We show that sv encodes an unconventional myosin heavy chain, myosin VI, which is expressed within the sensory hair cells of the inner ear, and appears to be required for maintaining their structural integrity. The requirement for myosin VI in hearing makes this gene an excellent candidate for a human deafness disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nadol, J.B. Hearing Loss. New. Engl. J. Med. 329, 1092–1102 (1993).

    Article  PubMed  Google Scholar 

  2. Steel, K.P. & Brown, S.D.M. Genes and deafness. Trends Genet. 10, 428–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Deol, M.S. & Green, M.C. Snell's waltzer, a new mutation affecting behaviour and the inner ear of the mouse. Genet. Res. 8, 339–345 (1966).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, L.B. Definition of functional units in a small chromosomal segment of the mouse and its use in interpreting the nature of radiation-induced mutations. Mutat. Res. 11, 107–123 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Mercer, J.A., Seperack, P.K., Strobel, M.C., Copeland, N.G. & Jenkins, N.A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 348, 709–713 (1991).

    Article  Google Scholar 

  6. Kingsley, D.M. et al. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGFβ superfamily. Cell 71, 399–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Church, D.M., Stotler, C.J., Rutter, J.L., Murrell, J.R., Trofatter, J.A. & Buckler, A.J. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Hasson, T. & Mooseker, M.S. Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J. Cell Biol. 127, 425–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Cheney, R.E. & Mooseker, M.S. Unconventional myosins. Curr. Opin. Cell Biol. 4, 27–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Titus, M.A., Myosins. Curr. Opin. Cell Biol. 5, 77–81 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Copeland, N.G. & Jenkins, N.A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7, 113–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Steel, K.P. & Smith, R.J.H. Normal hearing in Splotch (Sp/+), the mouse homologue of Waardenburg syndrome type 1. Nature Genet. 2, 75–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Harvey, D. & Steel, K.R. The development and interpretation of the summating potential response. Hear. Res. 61, 137–146 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Bedell, M.A., Brannan, C.I., Evans, E.P., Copeland, N.G., Jenkins, N.A. & Donovan, P.J. DNA rearrangements bcated over 100 kb 5′ of the Steel (SI)-coding region in Steel-panda and Steel-contrasted mice deregulate SI expression and cause female sterility by disrupting ovarian follicle development. Genes Dev. 9, 455–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. de Kok, Y.J.M. et al. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267, 685–688 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Mermall, V., McNally, J.G. & Miller, K.G. Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature 369, 560–562 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Mermall, V. & Miller, K.G. The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm. J. Cell Biol. 129, 1575–1588 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Deol, M.S. Inherited diseases of the inner ear in man in the light of studies on the mouse. J. med. Genet. 5, 137–158 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spoendlin, H. Anatomical changes following various noise exposures. in Effects of noise on hearing. (eds Henderson, D. Hamernik, R. P, Dosnajh, D S. & J. H. Mills) (Raven Press, New York, 1976).

    Google Scholar 

  20. Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Cheney, R.E., Riley, M.A. & Mooseker, M.S. (1993). Phylogenetic analysis of the myosin superfamily. Cell Motil. Cytoskeleton 24, 215–223.

    Article  CAS  PubMed  Google Scholar 

  22. Lehrach, H. et al. Hybridization fingerpainting in genome mapping and sequencing. in Genome analysis: Genetic physical mapping. (eds Davies, K.E. & Tilghman, S.M.) 1, 39–81 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1990).

    Google Scholar 

  23. Jenkins, N.A., Copeland, N.G., Taylor, B.A. & Lee, B.K., Organization, distribution and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43, 26–36 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Anand, R., Villasante, A. & Tyler-Smith, C. Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucl. Acids Res. 17, 3425–3433 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burke, D.T., Rossi, J.M., Leung, J., Koos, D.S. & Tilghman, S.M. A mouse genomic library of yeast artificial chromosome clones. Mamm. Genome 1, 65 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Riley, J. et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucl. Acids Res. 18, 2887–2890 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avraham, K., Hasson, T., Steel, K. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11, 369–375 (1995). https://doi.org/10.1038/ng1295-369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing