Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure

Abstract

The X–lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C–terminal domain of diverse extracellular proteins. Sequence pattern searches and three–dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor β (TGFβ). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C–terminal domain of mucins and of von Willebrand factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sporn, M.B. & Roberts, A.B. (eds) In Peptide growth factors and their receptors (Springer, Berlin 1990).

    Google Scholar 

  2. McDonald, N.Q. & Hendrickson, W.A. A structural superfamily of growth factors containing a cystine knot motif. Cell 73, 421–424 (1993).

    Article  CAS  Google Scholar 

  3. Angeletti, R.H. & Bradshaw, R.A. Nerve growth factor from mouse submaxillary gland: amino acid sequence. Proc. natn. Acad. Sci. U.S.A. 68, 2417–2420 (1971).

    Article  CAS  Google Scholar 

  4. McDonald, N.Q. et al. New protein fold revealed by a 2,3-Å resolution crystal structure of nerve growth factor. Nature 364, 411–414 (1991).

    Article  Google Scholar 

  5. Schlunegger, M.P. & Grutter, M.G. An unusual feature revealed by the crystal structure at 2,2Å resolution of human transforming growth factor-β2. Nature 358, 430–434 (1992).

    Article  CAS  Google Scholar 

  6. Daopin, S., Piez, K.A., Ogawa, Y. & Davies, D.R. Crystal structure of transforming growth factor β2: An unusual fold for the superfamily. Science 257, 369–373 (1992).

    Article  CAS  Google Scholar 

  7. Oefner, C., D'Arcy, A., Winkler, F.K., Eggiman, B. & Hosang, M. Crystal structure of human platelet-derived growth factor BB. EMBO J. 11, 3921–3926 (1992).

    Article  CAS  Google Scholar 

  8. Swindells, M.B., Daopin, S., Cohen, G.H. & Davies, D. Structural similarity between transforming growth factor. ß2 and nerve growth factor Science 258, 1160–1162 (1992).

    Article  CAS  Google Scholar 

  9. Lin, L-F.H. et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    Article  CAS  Google Scholar 

  10. Meindl, A. et al. Norrie disease is caused by mutations in an extracellular protein resembling C-terminal globular domain of mucins. Nature Genet 2, 139–143 (1992).

    Article  CAS  Google Scholar 

  11. Berger, W. et al. Isolation of a candidate gene for Norrie disease by positional cloning. Nature Genet 1, 199–203 (1992).

    Article  CAS  Google Scholar 

  12. Chen, Z-Y. et al. Isolation and characterisation of a candidate gene for Norrie disease. Nature Genet 1, 204–208 (1992).

    Article  CAS  Google Scholar 

  13. Berger, W. et al. Mutations in the candidate gene for Norrie disease. Hum. molec. Genet. 1, 461–465, (1992).

    Article  CAS  Google Scholar 

  14. Warburg, M. Norrie's disease: A congenital progressive oculo-acoustico-cerebral degeneration. Acta Ophthalmol. 89, 1–147 (1966).

    Google Scholar 

  15. Apple, D.J., Fishman, G.A. & Goldberg, M.F. Ocular histopathology of Norrie's disease. Am. J. Ophthalmol. 78, 196–203 (1974).

    Article  CAS  Google Scholar 

  16. Parsons, M.A., Curtis, D., Blank, C.E., Hughes, H.N. & McCatney, A.C.E. The ocular pathology of Norrie disease in a fetus of 11 weeks' gestational age. Graefe's Arch. clin. exp. Ophthalmol. 230, 248–251 (1992).

    Article  CAS  Google Scholar 

  17. Rothberg, J.M. & Artavanis-Tsakonas, S. Modularity of the slit protein: characterisation of a conserved carboxy-terminal sequence in secreted proteins and a motif implicated in extracellular protein interactions. J. molec. Biol. 227, 367–370 (1992).

    Article  CAS  Google Scholar 

  18. Mancuso, D.J. et al. Structure and gene for human von Willebrand factor. J. biol. Chem. 264, 19514–19527 (1989).

    CAS  PubMed  Google Scholar 

  19. Rothberg, J.M., Jacobs, J.R., Goodman, C.S. & Atavanis-Tsakonas, S. Slit: an extracellular protein necessary for development of midline glia and commisural axon pathways contains both EGF and LRR domains. Genes Dev. 4, 2169–2187 (1990).

    Article  CAS  Google Scholar 

  20. Bradham, D.M., Igarashi, A., Potter, R.L. & Grotendorst, G.R. Connecting tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J. cell Biol. 114, 1285–1294 (1986).

    Article  Google Scholar 

  21. Rohde, K. & Bork, P. A fast, sensitive pattern matching approach for protein sequences. Comp. Appl. Biosci. 6, 183–189 (1993).

    Google Scholar 

  22. Rost, B. & Sander, C. Prediction of protein structure at better than 70% accuracy. J. molec. Biol. 232, 584–599 (1993).

    Article  CAS  Google Scholar 

  23. Voorberg, J. et al. Assembly and routing of von Willebrand factor variants: the requirements for disulphide-linked dimerization reside within the carboxy-terminal 151 amino acids. J. cell Biol. 113, 195–205 (1991).

    Article  CAS  Google Scholar 

  24. Tamaoki, H. et al. Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. Protein Eng. 4, 509–518 (1991).

    Article  CAS  Google Scholar 

  25. Qian, S.W. et al. Identification of a structural domain that distinguishes the actions of the type 1 and 2 isoforms of transforming growth factos ß on endothelial cells. Proc. natn. Acad. Sci. U.S.A. 89, 6290–6294 (1992).

    Article  CAS  Google Scholar 

  26. Steel, C.M. Peptide regulatory factors and malignancy in Peptide regulatory factors p. 121 (Edward Arnold, London, 1989).

    Google Scholar 

  27. Arend, W.P. & Dayer, J.M. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum. 33, 305 (1990).

    Article  CAS  Google Scholar 

  28. Kousseff, B.G. Sipple syndrome with lichen amyloidosis as a paracrinopathy. Am. J. med. Genet. 42, 751–753 (1992).

    Article  CAS  Google Scholar 

  29. Luetteke, N.C. et al. TGFa deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73, 263–278 (1993).

    Article  CAS  Google Scholar 

  30. Skevas, A., Kastanioudakis, I., Daniilidis, B. & Exarchakos, G. Norrie Warburg Syndrom. Laryngo-Rhino-Otol. 71, 534–536 (1992).

    Article  CAS  Google Scholar 

  31. Mudge, A.W. Motor neurons find their factors. Nature 363, 213 (1993).

    Article  CAS  Google Scholar 

  32. LaVail, M. et al. Multiple growth factors, cytokines and neurotrophins rescue photoreceptors form the damaging effects of constant light. Proc. natn. Acad. Sci. U.S.A. 89, 11249–11253 (1992).

    Article  CAS  Google Scholar 

  33. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

  34. Argos, P. A sensitive procedure to compare amino acid sequences. J. molec. Biol. 193, 385–391 (1988).

    Article  Google Scholar 

  35. Rost, B., Schneider, R. & Sander, C. Progress in protein structure prediction? Trends Biochem. Sci. 18, 120–123 (1993).

    Article  CAS  Google Scholar 

  36. Bemstein, S.C. et al. The protein databank: computer based archival file for macromolecular studies. J. molec. Biol. 112, 535–542 (1978).

    Google Scholar 

  37. Vriend, G. WHAT IF: a molecular modelling and drug design program J. molec. Graphics 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  38. Weiner, S.J. et al. A new force field for molecular simulation of nucleic acids and proteins. J. Am. chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  39. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed a schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  40. Gum, J.R. et al. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. biol. Chem. 267, 21375–21383 (1992).

    CAS  PubMed  Google Scholar 

  41. Xu, G. et al. cDNA for the carboxyl-terminal region of a rat intestinal mucin-like peptide. J. biol. Chem. 267, 5401–5407 (1992).

    CAS  PubMed  Google Scholar 

  42. Bork, P. Mobile modules and motifs. Curr. Op. struc. Biol. 2, 413–421 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meitinger, T., Meindl, A., Bork, P. et al. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet 5, 376–380 (1993). https://doi.org/10.1038/ng1293-376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1293-376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing