Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms' tumour

Abstract

Nephrogenic rests consist of foci of primitive renal cells, typically microscopic, that are found within the normal kidney tissue of children with Wilms' tumour. To study the relationship between nephrogenic rests and the associated tumours, we screened these lesions for mutations in the 11p13 Wilms' tumour suppressor gene, WT1. In two cases in which the Wilms' tumour contained a somatic WT1 mutation, the nephrogenic rest had the identical mutation. Nephrogenic rests and Wilms' tumours are therefore topographically distinct lesions that are clonally derived from an early renal stem cell. Inactivation of WT1 appears to be an early genetic event which can lead to the formation of nephrogenic rests, enhancing the probability that additional genetic hits will lead to Wilms' tumour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Stylianos E. Antonarakis, Brian G. Skotko, … Roger H. Reeves

References

  1. Beckwith, J., Kiviat, N. & Bonadio, J. Nephrogenic rests, nephroblastomatosis and the pathogenesis of Wilms' tumor. Ped. Pathol. 10, 1–36 (1990).

    Article  CAS  Google Scholar 

  2. Bove, K. & McAdams, A. Multifocal nephroblastic neoplasia. J. natn. Cancer Inst. 61, 285–294 (1978).

    CAS  Google Scholar 

  3. Bove, K. & McAdams, A. The nephroblastomatosis complex and its relationship to Wilms' tumor: a clinicopathologic treatise. Perspect. pediatr. Pathol. 3, 185–223 (1976).

    CAS  PubMed  Google Scholar 

  4. Knudson, A. & Strong, L. Mutation and cancer: a model for Wilms' tumor of the kidney. J. natn. Cancer Inst. 48, 313–324 (1972).

    Google Scholar 

  5. Haber, D. & Housman, D. The genetics of Wilms' tumor. Adv. cancer Res. 59, 41–68 (1992).

    Article  CAS  Google Scholar 

  6. Call, K. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60, 509–520 (1990).

    Article  CAS  Google Scholar 

  7. Gessler, M. et al. Homozygous deletion in Wilms' tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  CAS  Google Scholar 

  8. Pritchard-Jones, K. et al. The candidate Wilms' tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990).

    Article  CAS  Google Scholar 

  9. Buckler, A., Pelletier, J., Haber, D., Glaser, T. & Housman, D. Isolation, characterization, and expression of the murine Wilms' tumor gene (WT1) during kidney development. Molec. Cell Biol. 11, 1707–1712 (1991).

    Article  CAS  Google Scholar 

  10. Haber, D. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  Google Scholar 

  11. Cowell, J. et al. Structural rearrangements of the WT1 gene in Wilms' tumor cells. Oncogene 6, 595–599 (1991).

    CAS  PubMed  Google Scholar 

  12. Ton, C. et al. Smallest region of overlap in Wilms' tumor deletions uniquely implicates an 11p13 zinc finger gene as the disease locus. Genomics 10, 293–297 (1991).

    Article  CAS  Google Scholar 

  13. Little, M. et al. Zinc finger point mutations within the WT1 gene in Wilms' tumor patients. Proc. natn. Acad. Sci. U.S.A. 88, 4791–4795 (1992).

    Article  Google Scholar 

  14. Huff, V. et al. Evidence for WT1 as a Wilms' tumor (WT) gene: intragenic germinal deletion in bilateral WT. Am. J. hum. Genet. 48, 997–1003 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pelletier, J. et al. WT1 mutations contribute to abnormal genital system development and hereditary Wilms' tumour. Nature 353, 431–434 (1991).

    Article  CAS  Google Scholar 

  16. Pelletier, J. et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  Google Scholar 

  17. Henry, I. et al. Tumor-specific loss of 11 p15.5 alleles in del 11p13 Wilms' tumor and in familial adrenocorical carcinoma. Proc. natn. Acad. Sci. U.S.A. 86, 3247–3251 (1989).

    Article  CAS  Google Scholar 

  18. Riccardi, V., Sujansky, E., Smith, A. & Francke, U. Chromosomal imbalance in the aniridia-Wilms' tumor association: 11 p interstitial deletion. Pediatrics 61, 604–610 (1978).

    CAS  PubMed  Google Scholar 

  19. Wiedemann, H. Complexe malformatif familial avec hernie ombilicale et macroglossie—Un syndrome nouveau? J. Genet. hum. 13, 223–232 (1964).

    CAS  PubMed  Google Scholar 

  20. Beckwith, J. Macroglossia, omphalocele, adrenal cytomegaly, gigantism and hyperplastic visceromegaly. Birth Defects 5, 188–196 (1969).

    Google Scholar 

  21. Bove, K.E. & Kiser, B. AgNOR counts in multicentric Wilms' tumor distinguish maturing, dormant and expanding cell populations. Lab. Invest. 64, 2A (1991).

    Google Scholar 

  22. Pritchard-Jones, K. & Fleming, S. Cell types expressing the Wilms' tumour gene (WT1) in Wilms' tumour: implications for tumor histogenesis. Oncogene 6, 2211–210 (1991).

    CAS  PubMed  Google Scholar 

  23. Mulvihill, D.M., Mercado, M.G. & Boinaeau, F.G. Beckwith-Wiedemann syndrome and its association with Type II polycystic kidney disease. Pediatr. Nephrol. 3, 286–289 (1989).

    Article  CAS  Google Scholar 

  24. Haber, D. et al. Alternative splicing and genomic structure of the Wilms' tumor gene WT1. Proc. natn. Acad. Sci. U.S.A. 88, 9618–9622 (1991).

    Article  CAS  Google Scholar 

  25. Orita, N., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  26. Haber, D., Timmers, H., Pelletier, J., Sharp, P. & Housman, D. A dominant mutation in the Wilms' tumor gene WT1 cooperates with the viral oncogene E1A in transformation of primary kidney cells. Proc. natn. Acad. Sci. U.S.A. 89, 6010–6014 (1992).

    Article  CAS  Google Scholar 

  27. Sidransky, D. et al. Clonal origin of bladder cancer. New Engl. J. Med. 326, 737–740 (1992).

    Article  CAS  Google Scholar 

  28. Fearon, E. & Vogelstein, B. Agenetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  Google Scholar 

  29. Costanzi, E., da Silva Fernandes, M. & Erwenne, C. Esterase D in retinoma. Ophtalmic paed. Genet. 10, 157–160 (1989).

    Article  CAS  Google Scholar 

  30. Balmer, A., Munier, F. & Gailloud, C. Retinoma case studies. Ophthalmic paed. Genet. 12, 131–137 (1991).

    Article  CAS  Google Scholar 

  31. Haber, D. & Housman, D. Rate-limiting steps: the genetics of pediatric cancers. Cell 64, 5–8 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Bernard, A., Bove, K. et al. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms' tumour. Nat Genet 5, 363–367 (1993). https://doi.org/10.1038/ng1293-363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1293-363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing