Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader–Willi syndrome region

Abstract

Prader–Willi syndrome (PWS) is associated with paternal gene deficiencies in human chromosome 15q11–13, suggesting that PWS is caused by a deficiency in one or more maternally imprinted genes. We have now mapped a gene, Snrpn, encoding a brain–enriched small nuclear ribonucleoprotein (snRNP)–associated polypeptide SmN, to mouse chromosome 7 in a region of homology with human chromosome 15q11–13 and demonstrated that Snrpn is a maternally imprinted gene in mouse. These studies, in combination with the accompanying human mapping studies showing that SNRPN maps in the Prader–Willi critical region, identify SNRPN as a candidate gene involved in PWS and suggest that PWS may be caused, in part, by defects in mRNA processing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guthrie, C. Messenger RNA splicing in yeast: Clues to why the spliceosome is a ribonucleoprotein. Science 253, 157–163 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Luhrmann, R., Kastner, B. & Bach, M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim. Biophys. Acta 1087, 265–292 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Steitz, J.A. et al. Function of the abundant U-snRNPs. In Structure and function of Major and Minor Small Nuclear Ribonuclear Ribonucleoprotein Particles (ed. Birnstiel, M.L) 115–154 (Springer-Verlag, New York, 1990).

    Google Scholar 

  4. Lerner, M.R. & Steitz, J.A. Antibodies to small nuclear RNAs complexed with proteins are produced by pateints with systemic lupus erythematosus. Proc. natn. Acad. Sci. U.S.A. 76, 5495–5499 (1979).

    Article  CAS  Google Scholar 

  5. McAllister, G., Amara, S.G. & Lerner, M.R. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N. Proc. natn. Acad. Sci. U.S.A. 85, 5296–5300 (1988).

    Article  CAS  Google Scholar 

  6. McAllister, G., Roby-Shemkovitz, A., Amara, S.G. & Lerner, M.R. cDNA sequence of the rat U snRNP-associated protein N: Description of a potential Sm epitope. EMBO J. 8, 1177–1181 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, S., Klein, E.S., Russo, A.F., Simmons, D.M. & Rosenfeld, M.G. Isolation of cONA clones encoding small nuclear ribonucleoparticle-associated proteins with different tissue specificities. Proc. natn. Acad. Sci. U.S.A. 86, 9778–9782 (1989).

    Article  CAS  Google Scholar 

  8. Schmauss, C. & Lerner, M.R. The closely related small nuclear ribonucleoprotein polypeptides N and B/B' are distinguishable by antibodies as well as by differences in their rmRNAs and gene structures. J. biol. Chem. 265, 10733–10739 (1990).

    CAS  PubMed  Google Scholar 

  9. Schmauss, C., McAllister, G., Ohosone, Y., Hardin, J.A. & Lerner, M.R. A comparison of snRNP-associated Sm-autoantigens: human N, rat N, and human B/B'. Nucl. Acids Res. 17, 1733–1743 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharpe, N.G., Williams, D.G. & Latchman, D.S. Regulated expression of the small nuclear ribonucleoprotein particle protein SmN in embryonic stem cell differentiation. Molec. cell. Biol. 10, 6817–6820 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicholls, R.D., Gottleib, W., Avidano, K., Williams, C.A. & Driscoll, D. Mouse chromosome mapping of clones from the PWS/AS genetic region. Mouse Genome 89, 254 (1991).

    Google Scholar 

  12. Chaillet, J.R., Knoll, J.H.M., Horsthemke, B. & Lalande, M. The syntenic relationship between the critical deletion region for the Prader-Willi/Angleman syndromes and proximal mouse chromosome 7. Genomics 11, 773–776 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Wagstaff, J., Chaillet, J.R. & Lalande, M. The GABAA receptor β3 subunit gene: Characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Genomics 11, 1071–1078 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Özçelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  PubMed  Google Scholar 

  15. Ledbetter, D.H. et al. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. New Engl. J. Med. 304, 325–329 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Nicholls, R.D. et al. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hall, J.G. Genomic imprinting: review and relevance to human diseases. Am. J. hum. Genet. 46, 857–873 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Copeland, N.G. & Jenkins, N.A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7, 113–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Nakatsu, Y., Gondo, Y. & Brilliant, M.H. The ρ locus is closely linked to the mouse homolog of a gene from the Prader-Willi chromosomal region. Mammal. Genome 2, 69–71 (1992).

    Article  CAS  Google Scholar 

  21. Lalande, M., Nicholls, R.D. & Knoll, J.H.M. A cDNA from proximal human chromosome 15q maps near Mtv-1 on mouse chromosome 7. Mouse News Lett. 84, 87–88 (1989).

    Google Scholar 

  22. Gardner, J.M. et al. The mouse pink-eyed dilution gene: association with human Prader-Willi and Angelman syndromes. Science 257, 1121–1124 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Donlon, T.A., Lalande, M., Wyman, A., Bruns, G. & Latt, S.A. Isolation of molecular probes associated with chromosome 15 instability in the Prader-Willi syndrome. Proc. natn. Acad. Sci. U.S.A. 83, 4408–4412 (1989).

    Article  Google Scholar 

  24. Knoll, J.H.M. et al. Angelman syndrome: Three molecular classes identified with chromosome 15q11q13-specific DMA markers. Am. J. hum. Genet. 47, 149–155 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicholls, R.D. et al. Restriction fragment length polymorphisms within proximal 15q and their use in molecular cytogenetics and the Prader-Willi Syndrome. Am. J. med. Genet. 33, 66–77 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Tantravahi, U. et al. Quantitative calibration and use of DMA probes for investigating chromosome abnormalities in the Prader-Willi syndrome. Am. J. med. Genet. 33, 78–87 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Wagstaff, J. et al. Localization of the gene encoding the GABAA receptor β3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am. J. hum. Genet. 49, 330–337 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cattanach, B.M. & Beechey, C.V. Autosomal and X-chromosome imprinting. Development Suppl. 63–72 (1990).

  29. Barlow, D.P. et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Dechiara, T.M., Robertson, E.J. & Efstradiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Zemel, S., Bartolomei, M.S. & Tilghman, S.M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nature Genet. 2, 61–65 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Cattanach, B.M. et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet. 2, 270–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Saitoh, S. et al. Familial Angleman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor β3 subunit gene. Lancet 339, 366–367 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Wagstaff, J. et al. Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Bartolomei, M.S. & Tilghman, S.M. Parental imprinting of mouse chromosome 7. Sem. devl. Biol. 3, 107–117 (1992).

    Google Scholar 

  36. Prader, A., Labhart, A. & Willi, H. Ein syndrom von Adipositas, kleinwuchs, kryptochismus und ologophrenie nach myotonieartigem zustand in neugeborenalter. Schweiz. Med. Wochenschr. 86, 1260–1261 (1956).

    Google Scholar 

  37. Rosenfeld, M.G. et al. Production of novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304, 129–135 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Krahn, D.D., Gosnell, B.A., Levine, A.S. & Morley, J.E. Effects of calcitonin gene-related peptide on food intake. Peptide 5, 861–864 (1984).

    Article  CAS  Google Scholar 

  39. Goodman, E.C. & Iversen, L.L. Calcitonin gene related peptide: Novel peptide. Life Sci. 38, 2169–2178 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Delsert, C.D. & Rosenfeld, M.G. A tissue-specific small nuclear ribonucleoprotein and the regulated splicing of the calcitonin/calcitonin gene-related protein transcript. J. biol. Chem. 267, 14573–14579 (1992).

    CAS  PubMed  Google Scholar 

  41. Schmauss, C., Brines, M.L. & Lerner, M.R. The gene encoding the small nuclear ribonucleoprotein-associated protein N is expressed at high levels in neurons. J. biol. Chem. 267, 8521–8529 (1992).

    CAS  PubMed  Google Scholar 

  42. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Jenkins, N.A., Copeland, N.G., Taylor, B.A. & Lee, B.K. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43, 26–36 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Copeland, N.G., Gilbert, D.J., Chretien, M., Seidah, N.G. & Jenkins, N.A. Regional localization of three convertases, PC1 (Nec-1), PC2 (Nec-2), and Furin (Fur), on mouse chromosomes. Genomics 13, 1356–1358 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Pritchard, M.A. et al. The interleukin-4 receptor gene (IL4R) maps to 16p11.2-16p12.1 in human and to the distal region of mouse chromosome 7. Genomics 10, 801–806 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Brilliant, M.H., Gondo, Y. & Eicher, E.M. Direct identification of the mouse pink-eyed unstable mutation by genome scanning. Science 252, 566–569 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Ceci, J.D., Kingsley, D.M., Silan, C.M., Copeland, N.G. & Jenkins, N.A. An interspecific backcross linkage map of the proximal half of mouse chromosome 14. Genomics 6, 673–678 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Haefliger, J.-A. et al. Four novel members of the connexin family of gap junction proteins. J. biol. Chem. 267, 2057–2064 (1992).

    CAS  PubMed  Google Scholar 

  50. Green, E.L. Genetics and Probability in Animal Breeding Experiments (Oxford University Press, New York, 1981).

    Book  Google Scholar 

  51. Winter, E., Yamamoto, F., Almoguera, C. & Purucho, M. A method to detect and characterize point mutations in transcribed genes: Amplification and over expression of the mutant c-Ki-ras allele in human tumor cells. Proc. natn. Acad. Sci. U.S.A. 82, 7575–7579 (1985).

    Article  CAS  Google Scholar 

  52. Chomczynski, P. & Sacchi, N. Single step method of RNA isolation by acid guanidinium thiocyanates-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leff, S., Brannan, C., Reed, M. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader–Willi syndrome region. Nat Genet 2, 259–264 (1992). https://doi.org/10.1038/ng1292-259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1292-259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing