Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human

Abstract

Linkage analysis and haplotype mapping in interspecific mouse crosses (Mus musculus × Mus spretus) identified the gene encoding Aurora2 (Stk6 in mouse and STK15 in human) as a candidate skin tumor susceptibility gene. The Stk6 allele inherited from the susceptible M. musculus parent was overexpressed in normal cells and preferentially amplified in tumor cells from F1 hybrid mice. We identified a common genetic variant in STK15 (resulting in the amino acid substitution F31I) that is preferentially amplified and associated with the degree of aneuploidy in human colon tumors. The Ile31 variant transforms rat1 cells more potently than the more common Phe31 variant. The E2 ubiquitin-conjugating enzyme UBE2N was a preferential binding partner of the 'weak' STK15 Phe31 variant form in yeast two-hybrid screens and in human cells. This interaction results in colocalization of UBE2N with STK15 at the centrosomes during mitosis. These results are consistent with an important role for the Ile31 variant of STK15 in human cancer susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: lod score plots for Skts13 on distal mouse chromosome 2.
Figure 2: Mouse and human physical maps surrounding Stk6/STK15.
Figure 3: Allelic expression of Stk6.
Figure 4: Colon tumor amplification of STK15 alleles.
Figure 5: CGH array analysis of colon cancer and STK15 genotype.
Figure 6: Effect of STK15 Phe31 and Ile31 on cell growth and tumorigenicity.
Figure 7: In vitro and in vivo interaction between STK15 and UBE2N.

Similar content being viewed by others

References

  1. Balmain, A., Ponder, B.A.J. & Gray, J. The genetics and genomics of cancer. Nat. Genet. 33, 238–244 (2003).

    Article  CAS  Google Scholar 

  2. Ponder, B.A. Cancer genetics. Nature 411, 336–341 (2001).

    Article  CAS  Google Scholar 

  3. Fijneman, R.J., de Vries, S.S., Jansen, R.C. & Demant, P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat. Genet. 14, 465–467 (1996).

    Article  CAS  Google Scholar 

  4. Balmain, A. & Nagase, H. Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet. 14, 139–144 (1998).

    Article  CAS  Google Scholar 

  5. Dietrich, W.F. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  Google Scholar 

  6. Nagase, H. et al. Distinct genetic loci control development of benign and malignant skin tumours in mice. Nat. Genet. 10, 424–429 (1995).

    Article  CAS  Google Scholar 

  7. Cormier, R.T. et al. The Mom1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 19, 3182–3192 (2000).

    Article  CAS  Google Scholar 

  8. Nagase, H., Mao, J.H. & Balmain, A. A subset of skin tumor modifier loci determines survival time of tumor-bearing mice. Proc. Natl. Acad. Sci. USA 96, 15032–15037 (1999).

    Article  CAS  Google Scholar 

  9. Iwabuchi, H. et al. Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res. 55, 6172–6180 (1995).

    CAS  PubMed  Google Scholar 

  10. Kallioniemi, A. et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc. Natl. Acad. Sci. USA 91, 2156–2160 (1994).

    Article  CAS  Google Scholar 

  11. Korn, W.M. et al. Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosomes Cancer 25, 82–90 (1999).

    Article  CAS  Google Scholar 

  12. Tanner, M.M. et al. Frequent amplification of chromosomal region 20q12–q13 in ovarian cancer. Clin. Cancer Res. 6, 1833–1839 (2000).

    CAS  PubMed  Google Scholar 

  13. Collins, C. et al. Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc. Natl. Acad. Sci. USA 95, 8703–8708 (1998).

    Article  CAS  Google Scholar 

  14. Albertson, D.G. et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet. 25, 144–146 (2000).

    Article  CAS  Google Scholar 

  15. Bischoff, J.R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065 (1998).

    Article  CAS  Google Scholar 

  16. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20, 189–193 (1998).

    Article  CAS  Google Scholar 

  17. Sen, S., Zhou, H. & White, R.A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14, 2195–2200 (1997).

    Article  CAS  Google Scholar 

  18. Cardon, L.R. & Bell, J.I. Association study designs for complex diseases. Nat. Rev. Genet. 2, 91–99 (2001).

    Article  CAS  Google Scholar 

  19. Berry, R. et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am. J. Hum. Genet. 67, 82–91 (2000).

    Article  CAS  Google Scholar 

  20. Dahlman, I. et al. Parameters for reliable results in genetic association studies in common disease. Nat. Genet. 30, 149–150 (2002).

    Article  CAS  Google Scholar 

  21. Reich, D.E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    Article  CAS  Google Scholar 

  22. Bischoff, J.R. & Plowman, G.D. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9, 454–459 (1999).

    Article  CAS  Google Scholar 

  23. Nigg, E.A. Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer 2, 815–825 (2002).

    Article  CAS  Google Scholar 

  24. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  Google Scholar 

  25. Giet, R. & Prigent, C. Aurora/IpI1p related kinases a new oncongenic family of mitotic serine threonine kinases. J. Cell Sci. 112, 3591–3601 (1999).

    CAS  PubMed  Google Scholar 

  26. McKenna, S. et al. Noncovalent interaction between ubiquitin and the human DNA repair protein MMS2 is required for Ubc13-mediated polyubiquitination. J. Biol. Chem. 276, 40120–40126 (2001).

    Article  CAS  Google Scholar 

  27. Antoch, M.P. et al. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 655–667 (1997).

    Article  CAS  Google Scholar 

  28. Miyoshi, Y., Iwao, K., Egawa, C. & Noguchi, S. Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int. J. Cancer 92, 370–373 (2001).

    Article  CAS  Google Scholar 

  29. Romanov, S.R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    Article  CAS  Google Scholar 

  30. Aldaz, C.M., Trono, D., Larcher, F., Slaga, T.J. & Conti, C.J. Sequential trisomization of chromosomes 6 and 7 in mouse skin premalignant lesions. Mol. Carcinog. 2, 22–26 (1989).

    Article  CAS  Google Scholar 

  31. Kemp, C.J., Fee, F. & Balmain, A. Allelotype analysis of mouse skin tumors using polymorphic microsatellites: sequential genetic alterations on chromosomes 6, 7, and 11. Cancer Res. 53, 6022–6027 (1993).

    CAS  PubMed  Google Scholar 

  32. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  33. Meraldi, P., Honda, R. & Nigg, E.A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    Article  CAS  Google Scholar 

  34. Ruivenkamp, C.A. et al. Ptprj is a candidate for the mouse colon cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat. Genet. 31, 295–300 (2002).

    Article  CAS  Google Scholar 

  35. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  36. Snijders, A.M. et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat. Genet. 29, 263–264 (2001).

    Article  CAS  Google Scholar 

  37. Segraves, R., Albertson, D. & Pinkel, D. Comparative genomic hybridization using BAC genomic microarrays. in DNA Arrays: A Laboratory Manual (ed. Bowtell, D.A.S.J.) 380–385 (Cold Spring Harbor Laboratory Press, New York, 2002).

    Google Scholar 

  38. Pinkel, D.E.A. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    Article  CAS  Google Scholar 

  39. Jain, A.N. et al. Fully automatic quantification of microarray image data. Genome Res. 12, 325–332 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Collins and S. Volik for sharing unpublished data on mouse chromosome 2, D. Albertson and D. Pinkel for assistance with array CGH analysis, D. Albertson for help in interpretation of CGH arrays, R. del Rosario and R. Contreras for assistance with animal husbandry, the UCSF Cancer Center Genome Core for the sequencing and study design of allelic discrimination and A.H. Trainer for ascertainment of the paired colon samples for this study. S.L. thanks A. Ashworth, P. Workman and colleagues in the laboratory for discussions and support, M. Lelekakis for help in animal studies and D. Robertson for assistance with confocal microscopy. The UCSF School of Medicine Research Evaluation and Allocation Committee Fund, a US National Cancer Institute Mouse Models of Human Cancer Consortium Grant, the Stewart Trust, the UCSF Prostate Spore and a UCSF Prostate Cancer Center Award supported this work. J.P.d.K. was supported by a research fellowship through the Dutch Cancer Society. A.E.-T. was supported by a US National Institutes of Health training grant. B.A.J.P. is a Gibb Fellow of the Cancer Research UK. Studies carried out in S.L.'s laboratory were funded by the Breakthrough Breast Cancer Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Spiros Linardopoulos or Allan Balmain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewart-Toland, A., Briassouli, P., de Koning, J. et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet 34, 403–412 (2003). https://doi.org/10.1038/ng1220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing