Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death

Abstract

Amyotrophic lateral sclerosis (ALS) is an incurable degenerative disorder of motoneurons. We recently reported that reduced expression of Vegfa causes ALS-like motoneuron degeneration in Vegfaδ/δ mice. In a meta-analysis of over 900 individuals from Sweden and over 1,000 individuals from Belgium and England, we now report that subjects homozygous with respect to the haplotypes −2,578A/−1,154A/−634G or −2,578A/−1,154G/−634G in the VEGF promoter/leader sequence had a 1.8 times greater risk of ALS (P = 0.00004). These 'at-risk' haplotypes lowered circulating VEGF levels in vivo and reduced VEGF gene transcription, IRES-mediated VEGF expression and translation of a novel large-VEGF isoform (L-VEGF) in vivo. Moreover, SOD1G93A mice crossbred with Vegfaδ/δ mice died earlier due to more severe motoneuron degeneration. Vegfaδ/δ mice were unusually susceptible to persistent paralysis after spinal cord ischemia, and treatment with Vegfa protected mice against ischemic motoneuron death. These findings indicate that VEGF is a modifier of motoneuron degeneration in human ALS and unveil a therapeutic potential of Vegfa for stressed motoneurons in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic association of VEGF with ALS.
Figure 2: Role and therapeutic potential of VEGF in stimulating motoneuron survival.

Similar content being viewed by others

References

  1. Shaw, C.E., Al-Chalabi, A. & Leigh, N. Progress in the pathogenesis of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep. 1, 69–76 (2001).

    Article  CAS  Google Scholar 

  2. Brown, R.H. Jr. & Robberecht, W. Amyotrophic lateral sclerosis: pathogenesis. Semin. Neurol. 21, 131–139 (2001).

    Article  Google Scholar 

  3. Rowland, L.P. & Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 344, 1688–1700 (2001).

    Article  CAS  Google Scholar 

  4. Cleveland, D.W. & Rothstein, J.D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

    Article  CAS  Google Scholar 

  5. Turner, M.R., Parton, M.J. & Leigh, P.N. Clinical trials in ALS: an overview. Semin. Neurol. 21, 167–175 (2001).

    Article  CAS  Google Scholar 

  6. Siddique, T. & Lalani, I. Genetic aspects of amyotrophic lateral sclerosis. Adv. Neurol. 88, 21–32 (2002).

    CAS  PubMed  Google Scholar 

  7. Andersen, P.M. Genetics of sporadic ALS. Amyotroph. Lateral. Scler. Other Motor Neuron Disord. 2 Suppl 1, S37–S41 (2001).

    Article  CAS  Google Scholar 

  8. Hand, C.K. & Rouleau, G.A. Familial amyotrophic lateral sclerosis. Muscle Nerve 25, 135–159 (2002).

    Article  CAS  Google Scholar 

  9. Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet. 29, 160–165 (2001).

    Article  CAS  Google Scholar 

  10. Julien, J.P. Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 104, 581–591 (2001).

    Article  CAS  Google Scholar 

  11. Figlewicz, D.A. et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 1757–1761 (1994).

    Article  CAS  Google Scholar 

  12. Al-Chalabi, A. et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157–164 (1999).

    Article  CAS  Google Scholar 

  13. Panas, M. et al. Genotyping of presenilin-1 polymorphism in amyotrophic lateral sclerosis. J. Neurol. 247, 940–942 (2000).

    Article  CAS  Google Scholar 

  14. Veldink, J.H. et al. Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology 56, 749–752 (2001).

    Article  CAS  Google Scholar 

  15. Siddique, T. et al. Lack of association between apolipoprotein E genotype and sporadic amyotrophic lateral sclerosis. Neurogenetics 1, 213–216 (1998).

    Article  CAS  Google Scholar 

  16. Lacomblez, L. et al. APOE: a potential marker of disease progression in ALS. Neurology 58, 1112–1114 (2002).

    Article  CAS  Google Scholar 

  17. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).

    Article  CAS  Google Scholar 

  18. Skene, J.P. & Cleveland, D.W. Hypoxia and Lou Gehrig. Nat. Genet. 28, 107–108 (2001).

    Article  CAS  Google Scholar 

  19. Shahbazi, M. et al. Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J. Am. Soc. Nephrol. 13, 260–264 (2002).

    CAS  PubMed  Google Scholar 

  20. Awata, T. et al. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 51, 1635–1639 (2002).

    Article  CAS  Google Scholar 

  21. Huez, I. et al. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol. Cell. Biol. 18, 6178–6190 (1998).

    Article  CAS  Google Scholar 

  22. Huez, I., Bornes, S., Bresson, D., Creancier, L. & Prats, H. New vascular endothelial growth factor isoform generated by internal ribosome entry site-driven CUG translation initiation. Mol. Endocrinol. 15, 2197–2210 (2001).

    Article  CAS  Google Scholar 

  23. Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  Google Scholar 

  24. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).

    Article  CAS  Google Scholar 

  25. Gurney, M.E. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J. Neurol. Sci. 152 Suppl 1, S67–S73 (1997).

    Article  CAS  Google Scholar 

  26. Lang-Lazdunski, L. et al. Ischemic spinal cord injury induced by aortic cross-clamping: prevention by riluzole. Eur. J. Cardiothorac. Surg. 18, 174–181 (2000).

    Article  CAS  Google Scholar 

  27. Lang-Lazdunski, L. et al. Spinal cord ischemia. Development of a model in the mouse. Stroke 31, 208–213 (2000).

    Article  CAS  Google Scholar 

  28. McCarron, S.L. et al. Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res. 62, 3369–3372 (2002).

    CAS  PubMed  Google Scholar 

  29. Hudder, A. & Werner, R. Analysis of a Charcot–Marie–Tooth disease mutation reveals an essential internal ribosome entry site element in the connexin-32 gene. J. Biol. Chem. 275, 34586–34591 (2000).

    Article  CAS  Google Scholar 

  30. Lazaris-Karatzas, A., Montine, K.S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990).

    Article  CAS  Google Scholar 

  31. West, M.J., Sullivan, N.F. & Willis, A.E. Translational upregulation of the c-myc oncogene in Bloom's syndrome cell lines. Oncogene 11, 2515–2524 (1995).

    CAS  PubMed  Google Scholar 

  32. Prats, A.C. & Prats, H. Translational control of gene expression: role of IRESs and consequences for cell transformation and angiogenesis. Prog. Nucleic Acid Res. Mol. Biol. 72, 367–413 (2002).

    Article  CAS  Google Scholar 

  33. Ferrara, N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J. Physiol. Cell Physiol. 280, C1358–C1366 (2001).

    Article  CAS  Google Scholar 

  34. Ioannidis, J.P., Ntzani, E.E., Trikalinos, T.A. & Contopoulos-Ioannidis, D.G. Replication validity of genetic association studies. Nat. Genet. 29, 306–309 (2001).

    Article  CAS  Google Scholar 

  35. Lohmueller, K.E., Pearce, C.L., Pike, M., Lander, E.S. & Hirschhorn, J.N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33, 177–182 (2003).

    Article  CAS  Google Scholar 

  36. Landeghem, G.F., Tabatabaie, P., Beckman, L., Beckman, G. & Andersen, P.M. Mn-SOD signal sequence mutation associated with sporadic motor neuron disease. Eur. J. Neurol. 6, 639–644 (1999).

    Article  Google Scholar 

  37. Giess, R. et al. Early onset of severe familial amyotrophic lateral sclerosis with a SOD- 1 mutation: potential impact of CNTF as a candidate modifier gene. Am. J. Hum. Genet. 70, 1277–1286 (2002).

    Article  CAS  Google Scholar 

  38. Giess, R. et al. Potential role of LIF as a modifier gene in the pathogenesis of amyotrophic lateral sclerosis. Neurology 54, 1003–1005 (2000).

    Article  CAS  Google Scholar 

  39. Yang, Z.J. et al. Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia. J. Neurosci. Res. 70, 140–149 (2002).

    Article  CAS  Google Scholar 

  40. Svensson, B. et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J. Cereb. Blood Flow Metab. 22, 1170–1175 (2002).

    Article  CAS  Google Scholar 

  41. Wick, A. et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J. Neurosci. 22, 6401–6407 (2002).

    Article  CAS  Google Scholar 

  42. Facchiano, F. et al. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg. 97, 161–168 (2002).

    Article  CAS  Google Scholar 

  43. Matsuzaki, H. et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J. 15, 1218–1220 (2001).

    Article  CAS  Google Scholar 

  44. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950 (2002).

    Article  CAS  Google Scholar 

  45. Carmeliet, P. & Storkebaum, E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin. Cell Dev. Biol. 13, 39–53 (2002).

    Article  CAS  Google Scholar 

  46. Sondell, M., Sundler, F. & Kanje, M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur. J. Neurosci. 12, 4243–4254 (2000).

    Article  CAS  Google Scholar 

  47. Li, B., Xu, W., Luo, C., Gozal, D. & Liu, R. VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Res. Mol. Brain Res. 111, 155–164 (2003).

    Article  CAS  Google Scholar 

  48. Nilsson, L.G. et al. The betula prospective cohort study: memory, health and aging. Aging Neuropsychol. Cogn. 4, 1–32 (1996).

    Article  Google Scholar 

  49. Thijs, V., Peeters, E., Theys, P., Matthijs, G. & Robberecht, W. Demographic characteristics and prognosis in a Flemish amyotrophic lateral sclerosis population. Acta Neurol. Belg. 100, 84–90 (2000).

    CAS  PubMed  Google Scholar 

  50. Terwilliger, J.D. & Ott, J. Handbook for Human Genetic Linkage (Johns Hopkins University Press, Baltimore, 1994).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Claeys and B. VanKeirsbilck for technical support, G. Breier for plasmids, the VIB Genetic Service Facility for pyrosequencing, B. Dermaut and C. van Duijn for critical discussions of the statistical analyses and K. Brepoels, A. Bouché, M. Demol, E. Gils, B. Hermans, S. Janssen, W. Man, A. Manderveld, K. Maris, W. Martens, C. Nijs, M. Nijs, S. Meynen, P. Van Wesemael, A. Van den Hoeck, B. Vanwetswinkel and S. Wyns for assistance. D.L. is supported by the Flemish Institute for the promotion of scientific research and E.S. by the Fund for Scientific Research, Belgium. This work is supported by grants from the Fund for Scientific Research, the Concerted Research Actions, Belgium and the European Union to P.C.; from the Scientific Projects Committee University of Birmingham to K.M.; from the Fund for Scientific Research and the Interuniversity Attraction Pole program to C.V.B. and W.R.; from Saitama Medical School Research Center and Maruki Memorial Special Scholarship to T.A.; and from the Nutrition and Toxicology and Growth and Development Research Institutes in Maastricht to R.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrechts, D., Storkebaum, E., Morimoto, M. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34, 383–394 (2003). https://doi.org/10.1038/ng1211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1211

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing