Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomere maintenance by recombination in human cells

Abstract

Telomeres of eukaryotic chromosomes contain many tandem repeats of a G-rich sequence (for example, TTAGGG in vertebrates1). In most normal human cells, telomeres shorten with each cell division, and it is proposed that this limits the number of times these cells can replicate2. Telomeres may be maintained in germline cells, and in many immortalized cells and cancers, by the telomerase holoenzyme3 (first discovered in the ciliate Tetrahymena4), which uses an RNA subunit as template for synthesis of telomeric DNA by the reverse transcriptase catalytic subunit5. Some immortalized human cell lines and some tumours maintain their telomeres in the absence of any detectable telomerase activity by a mechanism referred to as alternative lengthening of telomeres6,7 (ALT). Here we show that DNA sequences are copied from telomere to telomere in an immortalized human ALT cell line, indicating that ALT occurs by means of homologous recombination and copy switching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for detecting inter-telomeric copying of DNA.
Figure 2: Detection of plasmid tag DNA at the telomere by FISH.
Figure 3: Southern-blot analysis of GM847 and HT1080 lines.
Figure 4: Transfer of a single tagged telomere into GM847 cells.

Similar content being viewed by others

References

  1. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  CAS  Google Scholar 

  2. Olovnikov, A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon . J. Theor. Biol. 41, 181– 190 (1973).

    Article  CAS  Google Scholar 

  3. Shay, J.W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33A, 787–791 (1997).

    Article  Google Scholar 

  4. Greider, C.W. & Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405– 413 (1985).

    Article  CAS  Google Scholar 

  5. Colgin, L.M. & Reddel, R.R. Telomere maintenance mechanisms and cellular immortalization. Curr. Opin. Genet. Dev. 9, 97–103 ( 1999).

    Article  CAS  Google Scholar 

  6. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    Article  CAS  Google Scholar 

  7. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A. & Reddel, R.R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271– 1274 (1997).

    Article  CAS  Google Scholar 

  8. Mason, J.M. & Biessmann, H. The unusual telomeres of Drosophila. Trends Genet. 11, 58–62 (1995).

    Article  CAS  Google Scholar 

  9. Roth, C.W., Kobeski, F., Walter, M.F. & Biessmann, H. Chromosome end elongation by recombination in the mosquito Anopheles gambiae . Mol. Cell. Biol. 17, 5176– 5183 (1997).

    Article  CAS  Google Scholar 

  10. Lundblad, V. & Szostak, J.W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  Google Scholar 

  11. Lundblad, V. & Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues est1 senescence. Cell 73, 347– 360 (1993).

    Article  CAS  Google Scholar 

  12. McEachern, M.J. & Blackburn, E.H. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10, 1822–1834 ( 1996).

    Article  CAS  Google Scholar 

  13. Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B. & Lundblad, V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399–1412 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Teng, S.-C. & Zakian, V.A. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 (1999).

    Article  CAS  Google Scholar 

  15. Niida, H. et al. Telomere maintenance in telomerase-deficient mouse embryonic stem cells: Characterization of an amplified telomeric DNA. Mol. Cell. Biol. 20, 4115–4127 (2000).

    Article  CAS  Google Scholar 

  16. Yeager, T.R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179 (1999).

    CAS  PubMed  Google Scholar 

  17. Reddel, R.R., Bryan, T.M. & Murnane, J.P. Immortalized cells with no detectable telomerase activity. A review. Biochemistry (Mosc.) 62, 1254– 1262 (1997).

    CAS  Google Scholar 

  18. Kass-Eisler, A. & Greider, C.W. Recombination in telomere-length maintenance. Trends Biochem. Sci. 25, 200–204 (2000).

    Article  CAS  Google Scholar 

  19. Reddel, R.R. The role of senescence and immortalization in carcinogenesis. Carcinogenesis 21, 477–484 (2000).

    Article  CAS  Google Scholar 

  20. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 ( 1999).

    Article  CAS  Google Scholar 

  21. Murnane, J.P. & Yu, L.-C. Acquisition of telomere repeat sequences by transfected DNA integrated at the site of a chromosome break. Mol. Cell. Biol. 13, 977– 983 (1993).

    Article  CAS  Google Scholar 

  22. Sprung, C.N., Sabatier, L. & Murnane, J.P. Telomere dynamics in a human cancer cell line. Exp. Cell Res. 247, 29–37 (1999).

    Article  CAS  Google Scholar 

  23. Stout, K. et al. Somatic pairing between subtelomeric chromosome regions: implications for human genetic disease? Chromosome Res. 7, 323–329 (1999).

    Article  CAS  Google Scholar 

  24. Teng, S.-C., Chang, J., McCowan, B. & Zakian, V.A. Telomerase independent lengthening of Saccharomyces telomeres occurs by an abrupt Rad50p dependent, Rif inhibited recombinational process. Mol. Cell 6, 947–952 (2000).

    Article  CAS  Google Scholar 

  25. Walmsley, R.W., Chan, C.S.M., Tye, B.-K. & Petes, T.D. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310, 157–160 ( 1984).

    Article  CAS  Google Scholar 

  26. Colgin, L.M. et al. The hTERTα splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia (in press).

  27. Perrem, K. et al. Repression of an alternative mechanism for lengthening of telomeres in somatic cell hybrids. Oncogene 18, 3383–3390 (1999).

    Article  CAS  Google Scholar 

  28. Hanish, J.P., Yanowitz, J.L. & de Lange, T. Stringent sequence requirements for the formation of human telomeres. Proc. Natl Acad. Sci. USA 91, 8861–8865 (1994).

    Article  CAS  Google Scholar 

  29. Saxon, P.J., Srivatsan, E.S., Leipzig, G.V., Sameshima, J.H. & Stanbridge, E.J. Selective transfer of individual human chromosomes to recipient cells. Mol. Cell. Biol. 5, 140–146 ( 1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Haaf for the panel of subtelomeric CEPH mega-YACs, and T. de Lange for plasmid pSXneo-1.6-T2AG3. Supported by a project grant from the National Health and Medical Research Council of Australia, the Carcinogenesis Fellowship of the New South Wales Cancer Council, and a scholarship of the Judith Hyam Memorial Trust Fund for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger R. Reddel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunham, M., Neumann, A., Fasching, C. et al. Telomere maintenance by recombination in human cells. Nat Genet 26, 447–450 (2000). https://doi.org/10.1038/82586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing