Joseph L. DeRisi, Ph.D.

Department of Biochemistry and Biophysics University of California San Francisco, California 94143 USA

	1992	B.A., University of California at Santa Cruz, Santa Cruz, CA
	1992–1993	Research Assistant, Department of Biochemistry and Molecular Biology, University of California at Santa Cruz
	1997	Scientific Consultant, Microcide Pharmaceuticals, Mountain View, CA
	1998	Scientific Consultant, Rosetta Inpharmatics, Seattle, WA
•	1998	Scientific Consultant, RIKEN Life Science Center, Tsukuba City, Japan
	1998	Scientific Consultant, Novo Nordisk Biotechnology, Davis, CA
	1999	Scientific Consultant, Axon Instruments, Redwoord City, CA
	1999	Ph.D. in Biochemistry, Department of Biochemistry, Stanford University, Stanford, CA
	Honors 1992	Priscella Parkins Award (Excellence in the Hard Sciences)
	1992	Honors in the Major (Biochemistry and Molecular Biology

Yeast genomics and other DNA microarray exploits

DNA microarray-based gene expression studies of the model organism *Saccharomyces cerevisiae* have yielded a large amount of genomewide data concerning the cell cycle, various growth conditions and environmental stresses. These observations reveal the extent to which various cellular components share common regulatory patterns. The challenge then turns toward dissecting portions of these transcriptional programs in greater detail. How may we use the existing data and DNA microarrays to rapidly identify specific factors that are responsible for the observed patterns? These results generate additional hypotheses, which then can be tested through direct genetic manipulation and re-examination on a genome-wide scale. Additional data will be presented on how DNA microarrays can be used to probe protein-DNA interactions, and how DNA microarrays may be used to rapidly assay transcriptional programs of organisms for which there exists little or no sequence information.